Logotipo do repositório
 

Publicação:
Classification and characterization of places for mapping of environment using hierarchical neural network and omnivision

dc.contributor.authorSilva, Luciana L. [UNESP]
dc.contributor.authorTronco, Mário L. [UNESP]
dc.contributor.authorVian, Henrique A. [UNESP]
dc.contributor.authorSouza, Rogéria C. G. [UNESP]
dc.contributor.authorPorto, Arthur J. V.
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2022-04-28T20:44:03Z
dc.date.available2022-04-28T20:44:03Z
dc.date.issued2008-10-06
dc.description.abstractMobile robots need autonomy to fulfill their tasks. Such autonomy is related whith their capacity to explorer and to recognize their navigation environments. In this context, the present work considers techniques for the classification and extraction of features from images, using artificial neural networks. This images are used in the mapping and localization system of LACE (Automation and Evolutive Computing Laboratory) mobile robot. In this direction, the robot uses a sensorial system composed by ultrasound sensors and a catadioptric vision system equipped with a camera and a conical mirror. The mapping system is composed of three modules; two of them will be presented in this paper: the classifier and the characterizer modules. Results of these modules simulations are presented in this paper.en
dc.description.affiliationAutomation and Evolutive Computer Laboratory Computer and Statistic Sciences Department São Paulo State University - UNESP, Av. Cristovão Colombo, 2265, São José do Rio Preto- SP
dc.description.affiliationMechanical Engineering Departement São Carlos Engeneering School São Paulo University - USP, Av. trabalhador São-Carlense, 400, São Carlos - SP
dc.description.affiliationUnespAutomation and Evolutive Computer Laboratory Computer and Statistic Sciences Department São Paulo State University - UNESP, Av. Cristovão Colombo, 2265, São José do Rio Preto- SP
dc.format.extent487-490
dc.identifierhttp://dx.doi.org/10.1109/IWSSIP.2008.4604472
dc.identifier.citationProceedings of IWSSIP 2008 - 15th International Conference on Systems, Signals and Image Processing, p. 487-490.
dc.identifier.doi10.1109/IWSSIP.2008.4604472
dc.identifier.scopus2-s2.0-52949136338
dc.identifier.urihttp://hdl.handle.net/11449/225298
dc.language.isoeng
dc.relation.ispartofProceedings of IWSSIP 2008 - 15th International Conference on Systems, Signals and Image Processing
dc.sourceScopus
dc.subjectAffine invariant pattern
dc.subjectAttributes vector
dc.subjectHierarchical artificial neural network (RNAH)
dc.subjectOmnivision, mapping system
dc.titleClassification and characterization of places for mapping of environment using hierarchical neural network and omnivisionen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos