Publicação:
Multivariate models for correlated count data

dc.contributor.authorRodrigues-Motta, Mariana
dc.contributor.authorPinheiro, Hildete P.
dc.contributor.authorMartins, Eduardo G.
dc.contributor.authorAraújo, Márcio S. [UNESP]
dc.contributor.authordos Reis, Sérgio F.
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversity of British Columbia
dc.contributor.institutionCarleton University
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:28:56Z
dc.date.available2014-05-27T11:28:56Z
dc.date.issued2013-04-18
dc.description.abstractIn this study, we deal with the problem of overdispersion beyond extra zeros for a collection of counts that can be correlated. Poisson, negative binomial, zero-inflated Poisson and zero-inflated negative binomial distributions have been considered. First, we propose a multivariate count model in which all counts follow the same distribution and are correlated. Then we extend this model in a sense that correlated counts may follow different distributions. To accommodate correlation among counts, we have considered correlated random effects for each individual in the mean structure, thus inducing dependency among common observations to an individual. The method is applied to real data to investigate variation in food resources use in a species of marsupial in a locality of the Brazilian Cerrado biome. © 2013 Copyright Taylor and Francis Group, LLC.en
dc.description.affiliationDepartment of Statistics University of Campinas, Campinas, 13083-859
dc.description.affiliationDepartment of Forest Sciences Centre for Applied Conservation Research University of British Columbia, Vancouver, V6T1Z4
dc.description.affiliationDepartment of Biology Institute of Environmental Science Carleton University, Ottawa, K1S5B6
dc.description.affiliationDepartamento de Ecologia Universidade Estadual Paulista, Rio Claro, 13506-900
dc.description.affiliationDepartamento de Biologia Animal Universidade Estadual de Campinas, Campinas, 13083-862
dc.description.affiliationUnespDepartamento de Ecologia Universidade Estadual Paulista, Rio Claro, 13506-900
dc.format.extent1586-1596
dc.identifierhttp://dx.doi.org/10.1080/02664763.2013.789098
dc.identifier.citationJournal of Applied Statistics, v. 40, n. 7, p. 1586-1596, 2013.
dc.identifier.doi10.1080/02664763.2013.789098
dc.identifier.issn0266-4763
dc.identifier.issn1360-0532
dc.identifier.scopus2-s2.0-84879550005
dc.identifier.urihttp://hdl.handle.net/11449/75134
dc.identifier.wosWOS:000320753900015
dc.language.isoeng
dc.relation.ispartofJournal of Applied Statistics
dc.relation.ispartofjcr0.699
dc.relation.ispartofsjr0,475
dc.relation.ispartofsjr0,475
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.subjectmaximum likelihood
dc.subjectmixed model
dc.subjectmixture distribution
dc.subjectmultivariate count data
dc.subjectnegative binomial distribution
dc.subjectoverdispersion
dc.subjectPoisson distribution
dc.subjectzero-inflated data
dc.titleMultivariate models for correlated count dataen
dc.typeArtigo
dcterms.licensehttp://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp
dspace.entity.typePublication
unesp.author.orcid0000-0003-3533-744X[4]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Rio Claropt
unesp.departmentEcologia - IBpt

Arquivos