Logotipo do repositório
 

Publicação:
Path formulation for Z(2) circle plus Z(2)-equivariant bifurcation problems

dc.contributor.authorFerreira Costa, Joao Carlos
dc.contributor.authorSitta, Angela Maria
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T15:21:05Z
dc.date.available2014-05-20T15:21:05Z
dc.date.issued2007-01-01
dc.description.abstractM. Manoel and I. Stewart 0101) classify Z(2) circle plus Z(2)-equivariant bifurcation problems up to codimension 3 and 1 modal parameter, using the classical techniques of singularity theory of Golubistky and Schaeffer [8]. In this paper we classify these same problems using an alternative form: the path formulation (Theorem 6.1). One of the advantages of this method is that the calculates to obtain the normal forms are easier. Furthermore, in our classification we observe the presence of only one modal parameter in the generic core. It differs from the classical classification where the core has 2 modal parameters. We finish this work comparing our classification to the one obtained in [10].en
dc.description.affiliationUNESP, IBILCE, Dept Matemat, BR-15054000 Sao Jose do Rio Preto, SP, Brazil
dc.description.affiliationUnespUNESP, IBILCE, Dept Matemat, BR-15054000 Sao Jose do Rio Preto, SP, Brazil
dc.format.extent127-141
dc.identifierhttp://dx.doi.org/10.1007/978-3-7643-7776-2_10
dc.identifier.citationReal and Complex Singularities. Cambridge: Birkhauser Boston, p. 127-141, 2007.
dc.identifier.doi10.1007/978-3-7643-7776-2_10
dc.identifier.urihttp://hdl.handle.net/11449/32265
dc.identifier.wosWOS:000243343400010
dc.language.isoeng
dc.publisherBirkhauser Boston
dc.relation.ispartofReal and Complex Singularities
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectpath formulationpt
dc.subjectequivariant bifurcation problemspt
dc.subjectZ(2) circle plus Z(2)-symmetrypt
dc.subjectclassificationpt
dc.titlePath formulation for Z(2) circle plus Z(2)-equivariant bifurcation problemsen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.springer.com/open+access/authors+rights
dcterms.rightsHolderBirkhauser Boston
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentMatemática - IBILCEpt

Arquivos

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: