Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Feasibility of applying pAAm/CA/MMT hydrogels AS slow release fertilizers

dc.contributor.authorde Macedo, Osmir Fabiano L.
dc.contributor.authorBezerra, Rafaella L. N.
dc.contributor.authorOliveira, Rhayza V. M.
dc.contributor.authorCunha, Graziele C.
dc.contributor.authorRomão, Luciane P. C. [UNESP]
dc.contributor.institutionUniversidade Federal de Sergipe (UFS)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T18:37:00Z
dc.date.issued2022-07-01
dc.description.abstractBackground: Due to population growth, new technologies are needed for the production of fertilizers that can assist in increasing agricultural yields, while at the same time reducing environmental impacts. This article describes the synthesis, characterization, and behavior of a new series of hydrogels composed of polyacrylamide (pAAm), cellulose acetate (CA), and montmorillonite (MMT), suitable for the controlled release of fertilizers. The synergistic effects of the components were evaluated in sorption and desorption studies of a nitrogen fertilizer. Results: Four hydrogels were obtained: A, B, C, and D, with 0%, 5%, 10%, and 20% of MMT, respectively, in all cases with 10% of CA. The nitrogen contents of hydrogels A-D were 21.9%, 26.7%, 29.4%, and 25.2%, respectively. Hydrogel C absorbed the greatest amount of solution. Increase of the MMT content from 5% to 10% (w/w) led to swelling increases of 45%, 60%, 27%, and 20.7% at pH 5.0, 6.0, 7.0, and 9.0, respectively. Soil water retention assays showed that the soil containing the synthesized hydrogels retained up to 39% more water, compared to soil without hydrogel, with release during up to 30 days. The hydrogels presented low recovery percentages for applied nitrogen (around 42% lower than for the treatment with urea alone), demonstrating the effectiveness of the materials in reducing losses of nitrogen by leaching. The release of urea in the soil from hydrogel C (pAAm/10% MMT/10% CA) was gradual (25%, 75%, and 89% at 5, 20, and 30 days), indicative of slow release behavior. Conclusions: The presence of montmorillonite in the hydrogel caused the system to release the nutrient in a more controlled manner than obtained with the pure hydrogel. Hydrogel C, containing 10% montmorillonite and 10% cellulose acetate, showed excellent rates of swelling and nitrogen release in soil. The total nutrient values showed that this new material is potentially viable for application in agriculture.en
dc.description.affiliationDepartment of Chemistry Federal University of Sergipe (UFS)
dc.description.affiliationNational Institute for Alternative Technologies of Detection Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM) Institute of Chemistry UNESP
dc.description.affiliationUnespNational Institute for Alternative Technologies of Detection Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM) Institute of Chemistry UNESP
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdCNPq: 310921/2019-8
dc.description.sponsorshipIdCNPq: 465571/2014-0
dc.description.sponsorshipIdCAPES: 88887136426/2017/00
dc.format.extent361-372
dc.identifierhttp://dx.doi.org/10.1002/jsf2.69
dc.identifier.citationJSFA reports, v. 2, n. 7, p. 361-372, 2022.
dc.identifier.doi10.1002/jsf2.69
dc.identifier.issn2573-5098
dc.identifier.scopus2-s2.0-85211824902
dc.identifier.urihttps://hdl.handle.net/11449/298393
dc.language.isoeng
dc.relation.ispartofJSFA reports
dc.sourceScopus
dc.subjectcellulose acetate
dc.subjectcontrolled fertilizer release
dc.subjecthydrogel
dc.subjectmontmorillonite clay
dc.subjectpolyacrylamide
dc.titleFeasibility of applying pAAm/CA/MMT hydrogels AS slow release fertilizersen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationbc74a1ce-4c4c-4dad-8378-83962d76c4fd
relation.isOrgUnitOfPublication.latestForDiscoverybc74a1ce-4c4c-4dad-8378-83962d76c4fd
unesp.author.orcid0000-0002-6481-7437[5]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Química, Araraquarapt

Arquivos