Publicação: Voltammetric sensor based on magnetic particles modified composite electrode for determination of triamterene in biological sample
Carregando...
Arquivos
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
Some diuretic substances are controlled and monitored by the World Anti-Doping Agency as prohibited substances for use by athletes, such as triamterene (TRT). Thus, this work describes a voltammetric method based on graphite-epoxy composite electrode modified by tosyl-functionalized magnetic particles (GECE/MPs-To) for determination of TRT diuretic in urine sample. The TRT presented an oxidation peak at +1.24 V at GECE/MPs-To with irreversible behavior. Controlled potential electrolysis of the TRT at +1.26 V indicated the two electrons are transferred during amine group oxidation and the main product was identified by LC-MS/MS. The anodic peak current is 25 % higher at the modified electrode, suggesting that TRT is adsorbed on the magnetic particles. Using optimized conditions by using multivariate optimization of the parameters inherent of the square wave voltammetry, a calibration curve was constructed with a linear relationship for TRT from 0.500 to 99.8 μmol L−1. The limits of detection and quantification were 1.47 and 4.91 × 10−7 mol L−1, respectively. The proposed method was applied to urine sample and validated by LC-MS/MS technique where the values found and compared between the two techniques showed no significant difference at 95 % confidence.
Descrição
Palavras-chave
Diuretic, Graphite-epoxy composite electrode, Magnetic particles, Multivariate optimization, Triamterene, Voltammetric sensor
Idioma
Inglês
Como citar
Journal of Solid State Electrochemistry, v. 20, n. 9, p. 2491-2501, 2016.