Logo do repositório
 

Bacterial Cellulose

dc.contributor.authorBarud, Hernane S. [UNESP]
dc.contributor.authorGutierrez, Junkal
dc.contributor.authorLustri, Wilton R.
dc.contributor.authorPeres, Maristela F.S. [UNESP]
dc.contributor.authorRibeiro, Sidney J.L. [UNESP]
dc.contributor.authorSaska, Sybele [UNESP]
dc.contributor.authorTercjak, Agniezska
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionEscuela Politécnica Donostia
dc.contributor.institutionUNIARA
dc.date.accessioned2018-12-11T17:32:32Z
dc.date.available2018-12-11T17:32:32Z
dc.date.issued2016-01-01
dc.description.abstractBacterial Cellulose is produced extracellularly, in the form of nanofibers, by various bacteria genera, such as Gluconacetobacter, Agrobacterium, Aerobacter, Achromobacter, Azotobacter, Rhizobium, Sarcina, and Salmonella. Current methods of BC production include static culture, submerged fermentation through aerated or agitated cultivation and airlift bioreactors. BC membrane in a dried or never dried state has been extensively used as dressings for wound healing. Despite being natural wound dressings, bacterial cellulose-based dressings themselves present no antimicrobial activity to help in preventing wound infection. In order to achieve antimicrobial properties, BC membranes have been associated with different antimicrobial agents like silver nanoparticles, potassium sorbate, propolis, clays or chitosan. Besides medical applications and healthcare, self-sterilizing textiles, water purification and food packages are areas where BC membranes presenting antimicrobial activities could find application. Tissue engineering has achieved great progress in the development of scaffolds for repair or replacement of damaged tissues or organs.en
dc.description.affiliationInstitute of Chemistry São Paulo State University - UNESP, CP 355
dc.description.affiliationDepto. Ingenieria Quimica y del Medio Ambiente Escuela Politécnica Donostia, Pza. Europa 1
dc.description.affiliationUniversity Center of Araraquara UNIARA
dc.description.affiliationUnespInstitute of Chemistry São Paulo State University - UNESP, CP 355
dc.format.extent384-399
dc.identifierhttp://dx.doi.org/10.1002/9781119126218.ch21
dc.identifier.citationBiomaterials from Nature for Advanced Devices and Therapies, p. 384-399.
dc.identifier.doi10.1002/9781119126218.ch21
dc.identifier.scopus2-s2.0-85019616612
dc.identifier.urihttp://hdl.handle.net/11449/178883
dc.language.isoeng
dc.relation.ispartofBiomaterials from Nature for Advanced Devices and Therapies
dc.rights.accessRightsAcesso restritopt
dc.sourceScopus
dc.subjectAirlift bioreactors
dc.subjectAntimicrobial activities
dc.subjectAntimicrobial agents
dc.subjectBacterial cellulose
dc.subjectSelf-sterilizing textiles
dc.subjectSilver nanoparticles
dc.subjectSubmerged fermentation
dc.subjectTissue engineering
dc.subjectWound healing
dc.titleBacterial Celluloseen
dc.typeCapítulo de livropt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationbc74a1ce-4c4c-4dad-8378-83962d76c4fd
relation.isOrgUnitOfPublication.latestForDiscoverybc74a1ce-4c4c-4dad-8378-83962d76c4fd
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Química, Araraquarapt
unesp.departmentQuímica Inorgânica - IQARpt

Arquivos