Logotipo do repositório
 

Publicação:
On the solution of mathematical programming problems with equilibrium constraints

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

Mathematical programming problems with equilibrium constraints (MPEC) are nonlinear programming problems where the constraints have a form that is analogous to first-order optimality conditions of constrained optimization. We prove that, under reasonable sufficient conditions, stationary points of the sum of squares of the constraints are feasible points of the MPEC. In usual formulations of MPEC all the feasible points are nonregular in the sense that they do not satisfy the Mangasarian-Fromovitz constraint qualification of nonlinear programming. Therefore, all the feasible points satisfy the classical Fritz-John necessary optimality conditions. In principle, this can cause serious difficulties for nonlinear programming algorithms applied to MPEC. However, we show that most feasible points do not satisfy a recently introduced stronger optimality condition for nonlinear programming. This is the reason why, in general, nonlinear programming algorithms are successful when applied to MPEC.

Descrição

Palavras-chave

Mathematical programming with equilibrium constraints, Minimization algorithms, Optimality conditions, Reformulation, Algorithms, Convergence of numerical methods, Optimal control systems, Optimization, Problem solving, Mathematical programming with equilibrium constraints (MPEC), Nonlinear programming

Idioma

Inglês

Como citar

Mathematical Methods of Operations Research, v. 54, n. 3, p. 345-358, 2002.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação