Effect of Beam-Steering Angle, Operation Wavelength and Mean Inter-Element Distance on the Side-Lobe Levels of Integrated Optical Phased Arrays under Beam-Steering Operation
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
Integrated optical phased arrays (OPAs) play an important role in a broad range of applications. Fabrication constraints, however, pose a limit to the minimum inter-element separation that further results in high-intensity side lobes. The intensity of these secondary lobes can be reduced by arranging the antenna elements with non-uniform separation distance, which has been addressed by different methods. In this paper we employ one of the already proven optimization algorithms, i.e., differential evolution, to optimize the element positions of linear arrays with different configurations operating under beam-steering operation and considering a minimum inter-element distance. These optimizations allowed us to derive some design guidelines that can assist in reducing the side-lobe level (SLL) of integrated linear OPAs. In particular, we found that it is necessary to optimize the positions for the broadest beam-steering angle and the shortest operation wavelength. Additionally, optimizations of different configurations reveal that, when imposing a minimum inter-element distance, there is an optimum mean distance that minimizes the SLL of the array.
Descrição
Palavras-chave
differential evolution, optical phased arrays, side-lobe level
Idioma
Inglês
Citação
Photonics, v. 10, n. 12, 2023.




