Publicação: CUDA programs for solving the time-dependent dipolar Gross–Pitaevskii equation in an anisotropic trap
dc.contributor.author | Lončar, Vladimir | |
dc.contributor.author | Balaž, Antun | |
dc.contributor.author | Bogojević, Aleksandar | |
dc.contributor.author | Škrbić, Srdjan | |
dc.contributor.author | Muruganandam, Paulsamy | |
dc.contributor.author | Adhikari, Sadhan K. [UNESP] | |
dc.contributor.institution | University of Belgrade | |
dc.contributor.institution | University of Novi Sad | |
dc.contributor.institution | Bharathidasan University | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2018-12-11T16:59:54Z | |
dc.date.available | 2018-12-11T16:59:54Z | |
dc.date.issued | 2016-03-01 | |
dc.description.abstract | In this paper we present new versions of previously published numerical programs for solving the dipolar Gross-Pitaevskii (GP) equation including the contact interaction in two and three spatial dimensions in imaginary and in real time, yielding both stationary and non-stationary solutions. New versions of programs were developed using CUDA toolkit and can make use of Nvidia GPU devices. The algorithm used is the same split-step semi-implicit Crank-Nicolson method as in the previous version (Kishor Kumar et al., 2015), which is here implemented as a series of CUDA kernels that compute the solution on the GPU. In addition, the Fast Fourier Transform (FFT) library used in the previous version is replaced by cuFFT library, which works on CUDA-enabled GPUs. We present speedup test results obtained using new versions of programs and demonstrate an average speedup of 12-25, depending on the program and input size. | en |
dc.description.affiliation | Scientific Computing Laboratory Institute of Physics Belgrade University of Belgrade, Pregrevica 118 | |
dc.description.affiliation | Department of Mathematics and Informatics Faculty of Sciences University of Novi Sad, Trg Dositeja Obradovića 4 | |
dc.description.affiliation | School of Physics Bharathidasan University, Palkalaiperur Campus | |
dc.description.affiliation | Instituto de Física Teórica UNESP–Universidade Estadual Paulista, 01.140-70 São Paulo | |
dc.description.affiliationUnesp | Instituto de Física Teórica UNESP–Universidade Estadual Paulista, 01.140-70 São Paulo | |
dc.format.extent | 406-410 | |
dc.identifier | http://dx.doi.org/10.1016/j.cpc.2015.11.014 | |
dc.identifier.citation | Computer Physics Communications, v. 200, p. 406-410. | |
dc.identifier.doi | 10.1016/j.cpc.2015.11.014 | |
dc.identifier.file | 2-s2.0-84952025682.pdf | |
dc.identifier.issn | 0010-4655 | |
dc.identifier.scopus | 2-s2.0-84952025682 | |
dc.identifier.uri | http://hdl.handle.net/11449/172360 | |
dc.language.iso | eng | |
dc.relation.ispartof | Computer Physics Communications | |
dc.relation.ispartofsjr | 1,729 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | Bose–Einstein condensate | |
dc.subject | C program | |
dc.subject | CUDA program | |
dc.subject | Dipolar atoms | |
dc.subject | GPU | |
dc.subject | Gross–Pitaevskii equation | |
dc.subject | Partial differential equation | |
dc.subject | Real- and imaginary-time propagation | |
dc.subject | Split-step Crank–Nicolson scheme | |
dc.title | CUDA programs for solving the time-dependent dipolar Gross–Pitaevskii equation in an anisotropic trap | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0002-5435-1688[2] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulo | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- 2-s2.0-84952025682.pdf
- Tamanho:
- 385.08 KB
- Formato:
- Adobe Portable Document Format
- Descrição: