Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Restoring the Fluctuation–Dissipation Theorem in Kardar–Parisi–Zhang Universality Class through a New Emergent Fractal Dimension

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

The Kardar–Parisi–Zhang (KPZ) equation describes a wide range of growth-like phenomena, with applications in physics, chemistry and biology. There are three central questions in the study of KPZ growth: the determination of height probability distributions; the search for ever more precise universal growth exponents; and the apparent absence of a fluctuation–dissipation theorem (FDT) for spatial dimension (Formula presented.). Notably, these questions were answered exactly only for (Formula presented.) dimensions. In this work, we propose a new FDT valid for the KPZ problem in (Formula presented.) dimensions. This is achieved by rearranging terms and identifying a new correlated noise which we argue to be characterized by a fractal dimension (Formula presented.). We present relations between the KPZ exponents and two emergent fractal dimensions, namely (Formula presented.), of the rough interface, and (Formula presented.). Also, we simulate KPZ growth to obtain values for transient versions of the roughness exponent (Formula presented.), the surface fractal dimension (Formula presented.) and, through our relations, the noise fractal dimension (Formula presented.). Our results indicate that KPZ may have at least two fractal dimensions and that, within this proposal, an FDT is restored. Finally, we provide new insights into the old question about the upper critical dimension of the KPZ universality class.

Descrição

Palavras-chave

fluctuation–dissipation theorem, fractal dimensions, growth phenomena, KPZ equation, universality

Idioma

Inglês

Citação

Entropy, v. 26, n. 3, 2024.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso