Restoring the Fluctuation–Dissipation Theorem in Kardar–Parisi–Zhang Universality Class through a New Emergent Fractal Dimension
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
The Kardar–Parisi–Zhang (KPZ) equation describes a wide range of growth-like phenomena, with applications in physics, chemistry and biology. There are three central questions in the study of KPZ growth: the determination of height probability distributions; the search for ever more precise universal growth exponents; and the apparent absence of a fluctuation–dissipation theorem (FDT) for spatial dimension (Formula presented.). Notably, these questions were answered exactly only for (Formula presented.) dimensions. In this work, we propose a new FDT valid for the KPZ problem in (Formula presented.) dimensions. This is achieved by rearranging terms and identifying a new correlated noise which we argue to be characterized by a fractal dimension (Formula presented.). We present relations between the KPZ exponents and two emergent fractal dimensions, namely (Formula presented.), of the rough interface, and (Formula presented.). Also, we simulate KPZ growth to obtain values for transient versions of the roughness exponent (Formula presented.), the surface fractal dimension (Formula presented.) and, through our relations, the noise fractal dimension (Formula presented.). Our results indicate that KPZ may have at least two fractal dimensions and that, within this proposal, an FDT is restored. Finally, we provide new insights into the old question about the upper critical dimension of the KPZ universality class.
Descrição
Palavras-chave
fluctuation–dissipation theorem, fractal dimensions, growth phenomena, KPZ equation, universality
Idioma
Inglês
Citação
Entropy, v. 26, n. 3, 2024.




