Logotipo do repositório
 

Publicação:
Applying enhancement filters in the pre-processing of images of lymphoma

dc.contributor.authorSilva, Sérgio Henrique
dc.contributor.authorNascimento, Marcelo Zanchetta do
dc.contributor.authorNeves, Leandro Alves [UNESP]
dc.contributor.authorBatista, Valério Ramos
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal do ABC (UFABC)
dc.date.accessioned2015-10-21T13:13:59Z
dc.date.available2015-10-21T13:13:59Z
dc.date.issued2015-01-01
dc.description.abstractLymphoma is a type of cancer that affects the immune system, and is classified as Hodgkin or non-Hodgkin. It is one of the ten types of cancer that are the most common on earth. Among all malignant neoplasms diagnosed in the world, lymphoma ranges from three to four percent of them. Our work presents a study of some filters devoted to enhancing images of lymphoma at the pre-processing step. Here the enhancement is useful for removing noise from the digital images. We have analysed the noise caused by different sources like room vibration, scraps and defocusing, and in the following classes of lymphoma: follicular, mantle cell and B-cell chronic lymphocytic leukemia. The filters Gaussian, Median and Mean-Shift were applied to different colour models (RGB, Lab and HSV). Afterwards, we performed a quantitative analysis of the images by means of the Structural Similarity Index. This was done in order to evaluate the similarity between the images. In all cases we have obtained a certainty of at least 75%, which rises to 99% if one considers only HSV. Namely, we have concluded that HSV is an important choice of colour model at pre-processing histological images of lymphoma, because in this case the resulting image will get the best enhancement.en
dc.description.affiliationUniversidade Federal de Uberlândia, Faculdade de Engenharia Mecânica
dc.description.affiliationUniversidade Federal de Uberlândia, Faculdade de Ciência da Computação
dc.description.affiliationUniversidade Federal do ABC, Centro de Matemática, Ciência da Computação e Cognição
dc.description.affiliationUnespUniversidade Estadual Paulista, Departamento de Ciência da Computação e Estatística, Instituto de Biociências, Letras e Ciências Exatas de São José do Rio Preto
dc.format.extent1-4
dc.identifierhttp://iopscience.iop.org/article/10.1088/1742-6596/574/1/012122/meta
dc.identifier.citation3rd International Conference On Mathematical Modeling In Physical Sciences (IC-MSQUARE 2014). Bristol: Iop Publishing Ltd, v. 574, p. 1-4, 2015.
dc.identifier.doi10.1088/1742-6596/574/1/012122
dc.identifier.fileWOS000352595600122.pdf
dc.identifier.issn1742-6588
dc.identifier.lattes2139053814879312
dc.identifier.urihttp://hdl.handle.net/11449/128817
dc.identifier.wosWOS:000352595600122
dc.language.isoeng
dc.publisherIop Publishing Ltd
dc.relation.ispartof3rd International Conference On Mathematical Modeling In Physical Sciences (IC-MSQUARE 2014)
dc.relation.ispartofsjr0,241
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.titleApplying enhancement filters in the pre-processing of images of lymphomaen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://iopscience.iop.org/page/copyright
dcterms.rightsHolderIop Publishing Ltd
dspace.entity.typePublication
unesp.author.lattes2139053814879312
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000352595600122.pdf
Tamanho:
920.21 KB
Formato:
Adobe Portable Document Format