Logotipo do repositório
 

Publicação:
EEG-FES-Force-MMG closed-loop control systems of a volunteer with paraplegia considering motor imagery with fatigue recognition and automatic shut-off

dc.contributor.authorBroniera Junior, Paulo [UNESP]
dc.contributor.authorCampos, Daniel Prado
dc.contributor.authorLazzaretti, André Eugenio
dc.contributor.authorNohama, Percy
dc.contributor.authorCarvalho, Aparecido Augusto [UNESP]
dc.contributor.authorKrueger, Eddy
dc.contributor.authorMinhoto Teixeira, Marcelo Carvalho [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Tecnológica Federal do Paraná (UTFPR)
dc.contributor.institutionUniversidade Estadual de Londrina (UEL)
dc.contributor.institutionIoT e Manufatura 4.0
dc.date.accessioned2021-06-25T10:29:02Z
dc.date.available2021-06-25T10:29:02Z
dc.date.issued2021-07-01
dc.description.abstractPeople with spinal cord injury (SCI) may have their paralyzed muscles activated through functional electrical stimulation (FES). This neuromodulation technique has been used frequently to assist in controlling the movement of neuroprostheses. Electroencephalography (EEG) is able to trigger FES from the motor imagery captured through movements intentions. This research presents an isometric neuromuscular control system of the quadriceps muscle activated by EEG. Additionally, the detection of neuromuscular fatigue through the mechanomyography (MMG) technique is proposed, which is used to shut-off the system. A pilot study was performed on a chronic 42-year-old paraplegic (no voluntary contraction below the spinal cord injury level T8) volunteer. To do so, the training procedure for EEG signals was divided into the calibration and feedback phases. In the first one, four EEG channels and the Linear Discriminant Analysis (LDA) classifier were used to classify between motor imagery of the right leg and remain at rest. The maximum accuracy obtained during this stage was 77%. In the feedback phase, the volunteer was able to activate FES through brain–computer interface (BCI) in two tests (defined as Test 1 and Test 2) with the same procedure in different days. The closed-loop force control was tested with the setpoint of 2 kgf and 2.5 kgf and proved to be stable on both tests, successfully turning off the FES using the fatigue threshold from the MMG signal, being the main contribution of this work.en
dc.description.affiliationUniversidade Estadual Paulista Júlio Mesquita Filho (UNESP) Faculdade de Engenharia Campus Ilha Solteira, Av. Brasil Sul, 56
dc.description.affiliationUniversidade Tecnológica Federal do Paraná (UTFPR), Marcílio Dias, 635
dc.description.affiliationUniversidade Tecnológica Federal do Paraná (UTFPR), Avenida Sete de Setembro 3165
dc.description.affiliationUniversidade Estadual de Londrina (UEL) – Departamento de Anatomia Laboratório de Engenharia Neural e de Reabilitação, Rodovia Celso Garcia Cid – Pr 445, Km 380
dc.description.affiliationInstituto Senai de Tecnologia da Informação e Comunicação (ISTIC) Laboratório de Sistemas Eletrônicos - Embarcados e de Potência IoT e Manufatura 4.0, Rua Belém 844
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio Mesquita Filho (UNESP) Faculdade de Engenharia Campus Ilha Solteira, Av. Brasil Sul, 56
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.identifierhttp://dx.doi.org/10.1016/j.bspc.2021.102662
dc.identifier.citationBiomedical Signal Processing and Control, v. 68.
dc.identifier.doi10.1016/j.bspc.2021.102662
dc.identifier.issn1746-8108
dc.identifier.issn1746-8094
dc.identifier.scopus2-s2.0-85104927858
dc.identifier.urihttp://hdl.handle.net/11449/206252
dc.language.isoeng
dc.relation.ispartofBiomedical Signal Processing and Control
dc.sourceScopus
dc.subjectBrain–computer interface
dc.subjectClosed-loop systems
dc.subjectElectroencephalography
dc.subjectFunctional electrical stimulation
dc.subjectMechanomyography
dc.subjectMotor Imagery
dc.subjectSpinal cord injury
dc.titleEEG-FES-Force-MMG closed-loop control systems of a volunteer with paraplegia considering motor imagery with fatigue recognition and automatic shut-offen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0001-6233-6077 0000-0001-6233-6077[2]
unesp.author.orcid0000-0002-8051-8453[4]
unesp.author.orcid0000-0002-2996-2831[7]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Ilha Solteirapt

Arquivos