Logotipo do repositório
 

Publicação:
Bifurcations of the Riccati Quadratic Polynomial Differential Systems

dc.contributor.authorLlibre, Jaume
dc.contributor.authorLopes, Bruno D.
dc.contributor.authorSilva, Paulo R. da
dc.contributor.institutionUniv Autonoma Barcelona
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T15:06:27Z
dc.date.available2021-06-25T15:06:27Z
dc.date.issued2021-05-01
dc.description.abstractIn this paper, we characterize the global phase portrait of the Riccati quadratic polynomial differential system (x) over dot = alpha(2) (x), (y) over dot = ky(2) + beta(1)(x)y + -gamma(2)(x), with (x,y) is an element of R-2, gamma(2)(x) nonzero (otherwise the system is a Bernoulli differential system), k not equal 0 (otherwise the system is a Lienard differential system), beta(1)(x) a polynomial of degree at most 1, alpha(2)(x) and -gamma(2)(x) polynomials of degree at most 2, and the maximum of the degrees of alpha(2)(x) and ky(2) + beta(1)(x)y + gamma(2)(x) is 2. We give the complete description of the phase portraits in the Poincare disk (i.e. in the compactification of R-2 adding the circle S-1 of the infinity) modulo topological equivalence.en
dc.description.affiliationUniv Autonoma Barcelona, Dept Matemat, Barcelona 08193, Catalonia, Spain
dc.description.affiliationUniv Estadual Campinas, IMECC, BR-13081970 Campinas, S Paulo, Brazil
dc.description.affiliationIBILCE Univ Estadual Paulista, Dept Matemat, Rua C Colombo 2265, BR-15054000 Sjr Preto, S Paulo, Brazil
dc.description.affiliationUnespIBILCE Univ Estadual Paulista, Dept Matemat, Rua C Colombo 2265, BR-15054000 Sjr Preto, S Paulo, Brazil
dc.description.sponsorshipMinisterio de Economia, Industria y Competitividad, Agencia Estatal de Investigacion grant
dc.description.sponsorshipAgencia de Gestio d'Ajuts Universitaris i de Recerca grant
dc.description.sponsorshipH2020 European Research Council grant
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdMinisterio de Economia, Industria y Competitividad, Agencia Estatal de Investigacion grant: MTM201677278-P
dc.description.sponsorshipIdAgencia de Gestio d'Ajuts Universitaris i de Recerca grant: 2017SGR1617
dc.description.sponsorshipIdH2020 European Research Council grant: MSCA-RISE-2017-777911
dc.description.sponsorshipId: FP7-PEOPLE-2012-IRSES-316338
dc.format.extent13
dc.identifierhttp://dx.doi.org/10.1142/S0218127421500942
dc.identifier.citationInternational Journal Of Bifurcation And Chaos. Singapore: World Scientific Publ Co Pte Ltd, v. 31, n. 06, 13 p., 2021.
dc.identifier.doi10.1142/S0218127421500942
dc.identifier.issn0218-1274
dc.identifier.urihttp://hdl.handle.net/11449/210375
dc.identifier.wosWOS:000655591700003
dc.language.isoeng
dc.publisherWorld Scientific Publ Co Pte Ltd
dc.relation.ispartofInternational Journal Of Bifurcation And Chaos
dc.sourceWeb of Science
dc.subjectBifurcation
dc.subjecttopological equivalence
dc.subjectRiccati system
dc.subjectPoincare compactification
dc.subjectdynamics at infinity
dc.titleBifurcations of the Riccati Quadratic Polynomial Differential Systemsen
dc.typeArtigo
dcterms.rightsHolderWorld Scientific Publ Co Pte Ltd
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentMatemática - IBILCEpt

Arquivos