Publicação: Bifurcations of the Riccati Quadratic Polynomial Differential Systems
dc.contributor.author | Llibre, Jaume | |
dc.contributor.author | Lopes, Bruno D. | |
dc.contributor.author | Silva, Paulo R. da | |
dc.contributor.institution | Univ Autonoma Barcelona | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2021-06-25T15:06:27Z | |
dc.date.available | 2021-06-25T15:06:27Z | |
dc.date.issued | 2021-05-01 | |
dc.description.abstract | In this paper, we characterize the global phase portrait of the Riccati quadratic polynomial differential system (x) over dot = alpha(2) (x), (y) over dot = ky(2) + beta(1)(x)y + -gamma(2)(x), with (x,y) is an element of R-2, gamma(2)(x) nonzero (otherwise the system is a Bernoulli differential system), k not equal 0 (otherwise the system is a Lienard differential system), beta(1)(x) a polynomial of degree at most 1, alpha(2)(x) and -gamma(2)(x) polynomials of degree at most 2, and the maximum of the degrees of alpha(2)(x) and ky(2) + beta(1)(x)y + gamma(2)(x) is 2. We give the complete description of the phase portraits in the Poincare disk (i.e. in the compactification of R-2 adding the circle S-1 of the infinity) modulo topological equivalence. | en |
dc.description.affiliation | Univ Autonoma Barcelona, Dept Matemat, Barcelona 08193, Catalonia, Spain | |
dc.description.affiliation | Univ Estadual Campinas, IMECC, BR-13081970 Campinas, S Paulo, Brazil | |
dc.description.affiliation | IBILCE Univ Estadual Paulista, Dept Matemat, Rua C Colombo 2265, BR-15054000 Sjr Preto, S Paulo, Brazil | |
dc.description.affiliationUnesp | IBILCE Univ Estadual Paulista, Dept Matemat, Rua C Colombo 2265, BR-15054000 Sjr Preto, S Paulo, Brazil | |
dc.description.sponsorship | Ministerio de Economia, Industria y Competitividad, Agencia Estatal de Investigacion grant | |
dc.description.sponsorship | Agencia de Gestio d'Ajuts Universitaris i de Recerca grant | |
dc.description.sponsorship | H2020 European Research Council grant | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorshipId | Ministerio de Economia, Industria y Competitividad, Agencia Estatal de Investigacion grant: MTM201677278-P | |
dc.description.sponsorshipId | Agencia de Gestio d'Ajuts Universitaris i de Recerca grant: 2017SGR1617 | |
dc.description.sponsorshipId | H2020 European Research Council grant: MSCA-RISE-2017-777911 | |
dc.description.sponsorshipId | : FP7-PEOPLE-2012-IRSES-316338 | |
dc.format.extent | 13 | |
dc.identifier | http://dx.doi.org/10.1142/S0218127421500942 | |
dc.identifier.citation | International Journal Of Bifurcation And Chaos. Singapore: World Scientific Publ Co Pte Ltd, v. 31, n. 06, 13 p., 2021. | |
dc.identifier.doi | 10.1142/S0218127421500942 | |
dc.identifier.issn | 0218-1274 | |
dc.identifier.uri | http://hdl.handle.net/11449/210375 | |
dc.identifier.wos | WOS:000655591700003 | |
dc.language.iso | eng | |
dc.publisher | World Scientific Publ Co Pte Ltd | |
dc.relation.ispartof | International Journal Of Bifurcation And Chaos | |
dc.source | Web of Science | |
dc.subject | Bifurcation | |
dc.subject | topological equivalence | |
dc.subject | Riccati system | |
dc.subject | Poincare compactification | |
dc.subject | dynamics at infinity | |
dc.title | Bifurcations of the Riccati Quadratic Polynomial Differential Systems | en |
dc.type | Artigo | |
dcterms.rightsHolder | World Scientific Publ Co Pte Ltd | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Matemática - IBILCE | pt |