Logo do repositório

Theoretical assessment of feasibility to sequence DNA through interlayer electronic tunneling transport at aligned nanopores in bilayer graphene

dc.contributor.authorPrasongkit, Jariyanee
dc.contributor.authorFeliciano, Gustavo T. [UNESP]
dc.contributor.authorRocha, Alexandre R. [UNESP]
dc.contributor.authorHe, Yuhui
dc.contributor.authorOsotchan, Tanakorn
dc.contributor.authorAhuja, Rajeev
dc.contributor.authorScheicher, Ralph H.
dc.contributor.institutionNakhon Phanom University
dc.contributor.institutionNanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionHuazhong University of Science and Technology
dc.contributor.institutionMahidol University
dc.contributor.institutionRoyal Institute of Technology
dc.contributor.institutionUppsala University
dc.date.accessioned2018-12-11T16:59:28Z
dc.date.available2018-12-11T16:59:28Z
dc.date.issued2015-12-04
dc.description.abstractFast, cost effective, single-shot DNA sequencing could be the prelude of a new era in genetics. As DNA encodes the information for the production of proteins in all known living beings on Earth, determining the nucleobase sequences is the first and necessary step in that direction. Graphene-based nanopore devices hold great promise for next-generation DNA sequencing. In this work, we develop a novel approach for sequencing DNA using bilayer graphene to read the interlayer conductance through the layers in the presence of target nucleobases. Classical molecular dynamics simulations of DNA translocation through the pore were performed to trace the nucleobase trajectories and evaluate the interaction between the nucleobases and the nanopore. This interaction stabilizes the bases in different orientations, resulting in smaller fluctuations of the nucleobases inside the pore. We assessed the performance of a bilayer graphene nanopore setup for the purpose of DNA sequencing by employing density functional theory and non-equilibrium Green's function method to investigate the interlayer conductance of nucleobases coupling simultaneously to the top and bottom graphene layers. The obtained conductance is significantly affected by the presence of DNA in the bilayer graphene nanopore, allowing us to analyze DNA sequences.en
dc.description.affiliationDivision of Physics Faculty of Science Nakhon Phanom University
dc.description.affiliationNanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage
dc.description.affiliationInstitute of Chemistry Physical Chemistry Department Universidade Estadual Paulista (UNESP)
dc.description.affiliationInstituto de Física Téorica Universidade Estadual Paulista (UNESP)
dc.description.affiliationSchool of Optical and Electronic Information Huazhong University of Science and Technology, LuoYu Road
dc.description.affiliationDepartment of Physics Faculty of Science Mahidol University
dc.description.affiliationApplied Materials Physics Department of Materials and Engineering Royal Institute of Technology
dc.description.affiliationDivision of Materials Theory Department of Physics and Astronomy Uppsala University, Box 516
dc.description.affiliationUnespInstitute of Chemistry Physical Chemistry Department Universidade Estadual Paulista (UNESP)
dc.description.affiliationUnespInstituto de Física Téorica Universidade Estadual Paulista (UNESP)
dc.description.sponsorshipNational Science and Technology Development Agency
dc.identifierhttp://dx.doi.org/10.1038/srep17560
dc.identifier.citationScientific Reports, v. 5.
dc.identifier.doi10.1038/srep17560
dc.identifier.file2-s2.0-84949310104.pdf
dc.identifier.issn2045-2322
dc.identifier.scopus2-s2.0-84949310104
dc.identifier.urihttp://hdl.handle.net/11449/172273
dc.language.isoeng
dc.relation.ispartofScientific Reports
dc.relation.ispartofsjr1,533
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.titleTheoretical assessment of feasibility to sequence DNA through interlayer electronic tunneling transport at aligned nanopores in bilayer grapheneen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.lattes4785631459929035[3]
unesp.author.orcid0000-0001-8874-6947[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt
unesp.departmentFísico-Química - IQARpt

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-84949310104.pdf
Tamanho:
1.07 MB
Formato:
Adobe Portable Document Format
Descrição: