Publicação:
Development of an artificial neural network for predicting energy absorption capability of thermoplastic commingled composites

dc.contributor.authorDi Benedetto, R. M. [UNESP]
dc.contributor.authorBotelho, E. C. [UNESP]
dc.contributor.authorJanotti, A.
dc.contributor.authorAncelotti Junior, A. C.
dc.contributor.authorGomes, G. F.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Delaware UDEL
dc.contributor.institutionFed Univ Itajuba UNIFEI
dc.date.accessioned2021-06-25T12:31:23Z
dc.date.available2021-06-25T12:31:23Z
dc.date.issued2021-02-01
dc.description.abstractSoft computing techniques including artificial neural networks (ANN) and machine learning reflect new possibilities to behavior prediction models of commingled composites. This study focuses on developing an artificial neural network capable of predicting the impact energy absorption capability of thermoplastic commingled composites, in the context of crashworthiness, based on a compilation of experimental results, multiple regression analytical model and factorial design method. Furthermore, the scientific approach of this project comprises the (i) development of intelligent models for designing and manufacturing of new composite components, (ii) application of computational methods to predict material performance and behavior, and (iii) optimization of manufacturing processes. The innovativeness of this proposal is to initiate the use of computational methods to describe mechanical and structural properties of thermoplastic commingled composite materials and the development of an artificial neural network able to predict the energy absorption capability of these materials, considering some properties of polymer matrix, thermal degradation kinetics model and consolidation parameters. The obtained results from impact testing indicate that the proposed approach can predict the impact energy with satisfactory accuracy. The use of an analytical model database as input for the ANN is an innovative methodology to increase the reliability and accuracy of the ANNs.en
dc.description.affiliationSao Paulo State Univ UNESP, Sch Engn, Mat & Technol Dept, Av Ariberto Pereira da Cunha 333, BR-333 Guaratingueta, SP, Brazil
dc.description.affiliationUniv Delaware UDEL, Dept Mat Sci & Engn, 212 DuPont Hall, Newark, DE 19716 USA
dc.description.affiliationFed Univ Itajuba UNIFEI, NTC Composite Technol Ctr, Mech Engn Inst, Av BPS, BR-1303 Itajuba, MG, Brazil
dc.description.affiliationUnespSao Paulo State Univ UNESP, Sch Engn, Mat & Technol Dept, Av Ariberto Pereira da Cunha 333, BR-333 Guaratingueta, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFINEP
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
dc.description.sponsorshipNSF Early Career Award
dc.description.sponsorshipIdFAPESP: 2018/24964-2
dc.description.sponsorshipIdFAPESP: 2019/22173-0
dc.description.sponsorshipIdFAPESP: 2017/16970-0
dc.description.sponsorshipIdCNPq: 303224/2016-9
dc.description.sponsorshipIdCNPq: 311709/2017-6
dc.description.sponsorshipIdFINEP: 0.1.13.0169.00
dc.description.sponsorshipIdFAPEMIG: APQ-00385-18
dc.description.sponsorshipIdFAPEMIG: APQ-0184618
dc.description.sponsorshipIdNSF Early Career Award: DMR-1652994
dc.format.extent12
dc.identifierhttp://dx.doi.org/10.1016/j.compstruct.2020.113131
dc.identifier.citationComposite Structures. Oxford: Elsevier Sci Ltd, v. 257, 12 p., 2021.
dc.identifier.doi10.1016/j.compstruct.2020.113131
dc.identifier.issn0263-8223
dc.identifier.urihttp://hdl.handle.net/11449/209850
dc.identifier.wosWOS:000604730100003
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofComposite Structures
dc.sourceWeb of Science
dc.subjectDesign of experiments
dc.subjectCommingled composites
dc.subjectCrashworthiness
dc.subjectThermal degradation kinetics
dc.subjectMultiple regression model
dc.titleDevelopment of an artificial neural network for predicting energy absorption capability of thermoplastic commingled compositesen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.departmentMateriais e Tecnologia - FEGpt

Arquivos