Logotipo do repositório
 

Publicação:
Monitoramento da condição da ferramenta de dressagem usando sinais de vibração e modelos neurais

dc.contributor.advisorAguiar, Paulo Roberto de [UNESP]
dc.contributor.authorRocha, Camila Alves da [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2015-04-09T12:28:23Z
dc.date.available2015-04-09T12:28:23Z
dc.date.issued2014-11-26
dc.description.abstractReal time monitoring of the dressing process is becoming more and more necessary because it plays a very important role in the finish of the part manufactured by the grinding process. On the other hand, dresser wear is very expensive and not much effective to be monitored visually, but it is usually so developed in industry. The vibration sensor can be a useful tool in the process automation; however, it is rarely used as can be verified in research works. This work presents a classification method for three wear conditions (new, semi-new, and worn) of single-point dresser by using vibration signal and neural networks. Experimental runs were carried out in a surface grinding machine equipped with aluminium oxide grinding wheel, where the vibration signal was acquired by a fixed sensor attached to the dresser bolder. The signal spectra analysis was performed with regarding to the aforementioned wear conditions, and seven frequency bands were selected. Several neural network models were tested, which had two input statistics from the digital processing of the raw signal filtered for a given frequency band selected. Following hundreds of input combinations, number of hidder layers and neurons, two best models were chosen and analyzed, which showed results with up to 98.3% success rateen
dc.description.abstractO monitoramento em tempo real do processo de dressagem vem se tornando cada vez mais necessário, pois tem um papel muito importante no acabamento de peças produzidas pelo processo de retificação. Por outro lado, o desgaste dos dressadoers é muito custoso e pouco eficiente para ser monitorado visualmente, como normalmente é feito nas indústrias. O sensor de vibração é uma grande ferramenta na automação desse processo, porém ainda é pouco utilizado, como se constata na literatura. Este trabalho apresenta um método de classificação do desgaste da ferramenta de ponta única em três condições distintas (novo, meia-vida e desgastado), por meio de vibração e redes neurais. Ensaios de dressagens foram realizados em uma retificadora plana tangencial, rebolo de óxido de alumínio, com a aquisição dos sinais de vibração por meio de um sensor fixo no suporte do dressador. Um estudo foi desenvolvido do espectro do sinal para as três condições de desgaste, no qual sete bandas de frequências foram selecionadas. Vários modelos neurais foram testados, os quais possuíam como entradas duas estatísticas obtidas a partir do sinal original filtrado para uma dada banda de frequência selecionada. Após centenas de combinações de entradas, número de camadas ocultas e número de neurônio, dois melhores modelos foram escolhidos e analisados, os quais apresentaram resultados com até 98,3% de taxa de acertospt
dc.format.extent66 f. : il.
dc.identifier.aleph000813379
dc.identifier.capes33004056087P2
dc.identifier.citationROCHA, Camila Alves da. Monitoramento da condição da ferramenta de dressagem usando sinais de vibração e modelos neurais. 2014. 66 f. Dissertação (mestrado) - Universidade Estadual Paulista Julio de Mesquita Filho, Faculdade de Engenharia, 2014.
dc.identifier.file000813379.pdf
dc.identifier.lattes1455400309660081
dc.identifier.orcid0000-0002-9934-4465
dc.identifier.urihttp://hdl.handle.net/11449/122125
dc.language.isopor
dc.publisherUniversidade Estadual Paulista (Unesp)
dc.rights.accessRightsAcesso aberto
dc.sourceAleph
dc.subjectRedes neurais (Computação)pt
dc.subjectRetificadores de corrente eletricapt
dc.subjectDetectorespt
dc.subjectVibraçãopt
dc.subjectNeural networks (Computer science)pt
dc.titleMonitoramento da condição da ferramenta de dressagem usando sinais de vibração e modelos neuraispt
dc.typeDissertação de mestrado
dspace.entity.typePublication
unesp.advisor.lattes1455400309660081
unesp.advisor.orcid0000-0002-9934-4465
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Baurupt
unesp.graduateProgramEngenharia Elétrica - FEBpt
unesp.knowledgeAreaAutomaçãopt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
000813379.pdf
Tamanho:
2.25 MB
Formato:
Adobe Portable Document Format