Logo do repositório

Correlation Between Wind Turbine Failures and Environmental Conditions: A Machine Learning Approach

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Wind energy has emerged as a vital renewable source, competing with conventional energy due to its clean and inexhaustible nature. However, the global mass production of wind turbines often disregards the unique environmental conditions of installation sites, leading to performance and reliability challenges. This study applies machine learning methodologies to analyze the correlation between wind turbine failures and local environmental conditions. The research leverages Rough Set Theory to transform instances of undesirable turbine shutdowns - especially those influenced by incomplete tropicalization processes - into actionable decision rules. The findings provide practical insights applicable to wind farms worldwide, enabling optimized maintenance strategies and precise adjustments to protection parameters. These improvements contribute to reducing failure rates, enhancing energy conversion efficiency, and promoting the sustainable expansion of wind energy across diverse geographic and climatic contexts.

Descrição

Palavras-chave

Machine learning, rough sets, wind energy, wind turbine failures, wind turbine projects tropicalization

Idioma

Inglês

Citação

IEEE Access, v. 13, p. 50043-50058.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso