Logotipo do repositório
 

Publicação:
Sequential time-window learning with approximate Bayesian computation: an application to epidemic forecasting

dc.contributor.authorValeriano, João Pedro [UNESP]
dc.contributor.authorCintra, Pedro Henrique
dc.contributor.authorLibotte, Gustavo
dc.contributor.authorReis, Igor
dc.contributor.authorFontinele, Felipe
dc.contributor.authorSilva, Renato
dc.contributor.authorMalta, Sandra
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionLaboratório Nacional de Computção Científica
dc.contributor.institutionRio de Janeiro State University
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversity of Alberta
dc.date.accessioned2023-07-29T13:32:25Z
dc.date.available2023-07-29T13:32:25Z
dc.date.issued2023-01-01
dc.description.abstractThe long duration of the COVID-19 pandemic allowed for multiple bursts in the infection and death rates, the so-called epidemic waves. This complex behavior is no longer tractable by simple compartmental model and requires more sophisticated mathematical techniques for analyzing epidemic data and generating reliable forecasts. In this work, we propose a framework for analyzing complex dynamical systems by dividing the data in consecutive time-windows to be separately analyzed. We fit parameters for each time-window through an approximate Bayesian computation (ABC) algorithm, and the posterior distribution of parameters obtained for one window is used as the prior distribution for the next window. This Bayesian learning approach is tested with data on COVID-19 cases in multiple countries and is shown to improve ABC performance and to produce good short-term forecasting.en
dc.description.affiliationInstituto de Física Teórica Universidade Estadual Paulista, R. Dr. Bento Teobaldo Ferraz, 271, Bloco 2, Barra Funda, SP
dc.description.affiliationInstituto de Física Gleb Wataghin Universidade Estadual de Campinas, Rua Sérgio Buarque de Holanda, 777, SP
dc.description.affiliationLaboratório Nacional de Computção Científica, Av. Getulio Vargas, 333, RJ
dc.description.affiliationDepartment of Computational Modeling Polytechnic Institute Rio de Janeiro State University
dc.description.affiliationInstituto de Física de São Carlos Universidade de São Paulo, Av. Trab. São Carlense, 400 - Parque Arnold Schimidt, SP
dc.description.affiliationDepartment of Physics University of Alberta, 116 St & 85 Ave
dc.description.affiliationUnespInstituto de Física Teórica Universidade Estadual Paulista, R. Dr. Bento Teobaldo Ferraz, 271, Bloco 2, Barra Funda, SP
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)
dc.description.sponsorshipIdFAPESP: 2020/14169-0
dc.description.sponsorshipIdFAPESP: 2021/02027-0
dc.description.sponsorshipIdCAPES: 88887.625345/2021-00
dc.description.sponsorshipIdFAPERJ: E-26/200.347/2021
dc.format.extent549-558
dc.identifierhttp://dx.doi.org/10.1007/s11071-022-07865-x
dc.identifier.citationNonlinear Dynamics, v. 111, n. 1, p. 549-558, 2023.
dc.identifier.doi10.1007/s11071-022-07865-x
dc.identifier.issn1573-269X
dc.identifier.issn0924-090X
dc.identifier.scopus2-s2.0-85143814919
dc.identifier.urihttp://hdl.handle.net/11449/248024
dc.language.isoeng
dc.relation.ispartofNonlinear Dynamics
dc.sourceScopus
dc.subjectApproximate Bayesian computation
dc.subjectCovid-19
dc.subjectEpidemic forecasting
dc.subjectSEIRD model
dc.titleSequential time-window learning with approximate Bayesian computation: an application to epidemic forecastingen
dc.typeArtigo
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos