Publicação: Sequential time-window learning with approximate Bayesian computation: an application to epidemic forecasting
dc.contributor.author | Valeriano, João Pedro [UNESP] | |
dc.contributor.author | Cintra, Pedro Henrique | |
dc.contributor.author | Libotte, Gustavo | |
dc.contributor.author | Reis, Igor | |
dc.contributor.author | Fontinele, Felipe | |
dc.contributor.author | Silva, Renato | |
dc.contributor.author | Malta, Sandra | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.contributor.institution | Laboratório Nacional de Computção Científica | |
dc.contributor.institution | Rio de Janeiro State University | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.contributor.institution | University of Alberta | |
dc.date.accessioned | 2023-07-29T13:32:25Z | |
dc.date.available | 2023-07-29T13:32:25Z | |
dc.date.issued | 2023-01-01 | |
dc.description.abstract | The long duration of the COVID-19 pandemic allowed for multiple bursts in the infection and death rates, the so-called epidemic waves. This complex behavior is no longer tractable by simple compartmental model and requires more sophisticated mathematical techniques for analyzing epidemic data and generating reliable forecasts. In this work, we propose a framework for analyzing complex dynamical systems by dividing the data in consecutive time-windows to be separately analyzed. We fit parameters for each time-window through an approximate Bayesian computation (ABC) algorithm, and the posterior distribution of parameters obtained for one window is used as the prior distribution for the next window. This Bayesian learning approach is tested with data on COVID-19 cases in multiple countries and is shown to improve ABC performance and to produce good short-term forecasting. | en |
dc.description.affiliation | Instituto de Física Teórica Universidade Estadual Paulista, R. Dr. Bento Teobaldo Ferraz, 271, Bloco 2, Barra Funda, SP | |
dc.description.affiliation | Instituto de Física Gleb Wataghin Universidade Estadual de Campinas, Rua Sérgio Buarque de Holanda, 777, SP | |
dc.description.affiliation | Laboratório Nacional de Computção Científica, Av. Getulio Vargas, 333, RJ | |
dc.description.affiliation | Department of Computational Modeling Polytechnic Institute Rio de Janeiro State University | |
dc.description.affiliation | Instituto de Física de São Carlos Universidade de São Paulo, Av. Trab. São Carlense, 400 - Parque Arnold Schimidt, SP | |
dc.description.affiliation | Department of Physics University of Alberta, 116 St & 85 Ave | |
dc.description.affiliationUnesp | Instituto de Física Teórica Universidade Estadual Paulista, R. Dr. Bento Teobaldo Ferraz, 271, Bloco 2, Barra Funda, SP | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) | |
dc.description.sponsorshipId | FAPESP: 2020/14169-0 | |
dc.description.sponsorshipId | FAPESP: 2021/02027-0 | |
dc.description.sponsorshipId | CAPES: 88887.625345/2021-00 | |
dc.description.sponsorshipId | FAPERJ: E-26/200.347/2021 | |
dc.format.extent | 549-558 | |
dc.identifier | http://dx.doi.org/10.1007/s11071-022-07865-x | |
dc.identifier.citation | Nonlinear Dynamics, v. 111, n. 1, p. 549-558, 2023. | |
dc.identifier.doi | 10.1007/s11071-022-07865-x | |
dc.identifier.issn | 1573-269X | |
dc.identifier.issn | 0924-090X | |
dc.identifier.scopus | 2-s2.0-85143814919 | |
dc.identifier.uri | http://hdl.handle.net/11449/248024 | |
dc.language.iso | eng | |
dc.relation.ispartof | Nonlinear Dynamics | |
dc.source | Scopus | |
dc.subject | Approximate Bayesian computation | |
dc.subject | Covid-19 | |
dc.subject | Epidemic forecasting | |
dc.subject | SEIRD model | |
dc.title | Sequential time-window learning with approximate Bayesian computation: an application to epidemic forecasting | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulo | pt |