Superconformal Blocks in Diverse Dimensions and BC Symmetric Functions
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
We uncover a precise relation between superblocks for correlators of superconformal field theories (SCFTs) in various dimensions and symmetric functions related to the BC root system. The theories we consider are defined by two integers (m, n) together with a parameter θ and they include correlators of all half-BPS correlators in 4d theories with N= 2 n supersymmetry, 6d theories with (n, 0) supersymmetry and 3d theories with N= 4 n supersymmetry, as well as all scalar correlators in any non SUSY theory in any dimension, and conjecturally various 5d, 2d and 1d superconformal theories. The superblocks are eigenfunctions of the super Casimir of the superconformal group whose action we find to be precisely that of the BCm|n Calogero–Moser–Sutherland Hamiltonian. When m= 0 the blocks are polynomials, and we show how these relate to BCn Jacobi polynomials. However, differently from BCn Jacobi polynomials, the m= 0 blocks possess a crucial stability property that has not been emphasised previously in the literature. This property allows for a novel supersymmetric uplift of the BCn Jacobi polynomials, which in turn yields the (m, n; θ) superblocks. Superblocks defined in this way are related to Heckman–Opdam hypergeometrics and are non polynomial functions. A fruitful interaction between the mathematics of symmetric functions and SCFT follows, and we give a number of new results on both sides. One such example is a new Cauchy identity which naturally pairs our superconformal blocks with Sergeev–Veselov super Jacobi polynomials and yields the CPW decomposition of any free theory diagram in any dimension.
Descrição
Palavras-chave
Idioma
Inglês
Citação
Communications in Mathematical Physics, v. 402, n. 2, p. 995-1101, 2023.





