Polynomial slow-fast systems on the Poincaré–Lyapunov sphere
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
The main goal of this paper is to study compactifications of polynomial slow-fast systems. More precisely, the aim is to give conditions in order to guarantee normal hyperbolicity at infinity of the Poincaré–Lyapunov sphere for slow-fast systems defined in Rn. For the planar case, we prove a global version of the Fenichel Theorem, which assures the persistence of invariant manifolds in the whole Poincaré–Lyapunov disk. We also discuss the occurrence of non normally hyperbolic points at infinity, namely: fold, transcritical and pitchfork singularities.
Descrição
Palavras-chave
Geometric singular perturbation theory, Invariant manifolds, Poincaré compactification, Poincaré–Lyapunov compactification, Polynomial vector fields
Idioma
Inglês
Citação
Sao Paulo Journal of Mathematical Sciences, v. 18, n. 2, p. 1527-1552, 2024.




