Publicação: Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanases
dc.contributor.author | Contessoto, Vinicius de Godoi [UNESP] | |
dc.contributor.author | Ramos, Felipe Cardoso | |
dc.contributor.author | Melo, Ricardo Rodrigues de | |
dc.contributor.author | Oliveira, Vinicius Martins de | |
dc.contributor.author | Scarpassa, Josiane Aniele | |
dc.contributor.author | Sousa, Amanda Silva de | |
dc.contributor.author | Zanphorlin, Leticia Maria | |
dc.contributor.author | Slade, Gabriel Gouvea | |
dc.contributor.author | Pereira Leite, Vitor Barbanti [UNESP] | |
dc.contributor.author | Ruller, Roberto | |
dc.contributor.institution | Brazilian Ctr Res Energy & Mat | |
dc.contributor.institution | Rice Univ | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Univ Fed Triangulo Mineiro | |
dc.contributor.institution | Universidade Federal de Mato Grosso do Sul (UFMS) | |
dc.date.accessioned | 2021-06-25T15:07:21Z | |
dc.date.available | 2021-06-25T15:07:21Z | |
dc.date.issued | 2021-06-01 | |
dc.description.abstract | Understanding the aspects that contribute to improving proteins' biochemical properties is of high relevance for protein engineering. Properties such as the catalytic rate, thermal stability, and thermal resistance are crucial for applying enzymes in the industry. Different interactions can influence those biochemical properties of an enzyme. Among them, the surface charge-charge interactions have been a target of particular attention. In this study, we employ the Tanford-Kirkwood solvent accessibility model using the Monte Carlo algorithm (TKSA-MC) to predict possible interactions that could improve stability and catalytic rate of a WT xylanase (XynA(WT)) and its M6 xylanase (XynA(M6)) mutant. The modeling prediction indicates that mutating from a lysine in position 99 to a glutamic acid (K99E) favors the native state stabilization in both xylanases. Our lab results showed that mutated xylanases had their thermotolerance and catalytic rate increased, which conferred higher processivity of delignified sugarcane bagasse. The TKSA-MC approach employed here is presented as an efficient computational-based design strategy that can be applied to improve the thermal resistance of enzymes with industrial and biotechnological applications. | en |
dc.description.affiliation | Brazilian Ctr Res Energy & Mat, Brazilian Biorenewables Natl Lab, Campinas, SP, Brazil | |
dc.description.affiliation | Rice Univ, Ctr Theoret Biol Phys, Houston, TX USA | |
dc.description.affiliation | Sao Paulo State Univ, Inst Biosci Letters & Exact Sci, Dept Phys, Sao Jose Do Rio Preto, SP, Brazil | |
dc.description.affiliation | Brazilian Ctr Res Energy & Mat, Brazilian Biosci Natl Lab, Campinas, SP, Brazil | |
dc.description.affiliation | Univ Fed Triangulo Mineiro, Inst Exact Sci Nat & Educ, Theoret Biophys Lab, Uberaba, MG, Brazil | |
dc.description.affiliation | Univ Fed Mato Grosso do Sul, Inst Biosci, Microorganisms & Gen Biochem Lab, Campo Grande, MS, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ, Inst Biosci Letters & Exact Sci, Dept Phys, Sao Jose Do Rio Preto, SP, Brazil | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | FAPESP: 2016/13998-8 | |
dc.description.sponsorshipId | FAPESP: 2017/09662-7 | |
dc.description.sponsorshipId | CNPq: 141985/2013-5 | |
dc.description.sponsorshipId | FAPESP: 2017/14253-9 | |
dc.description.sponsorshipId | FAPESP: 2018/11614-3 | |
dc.description.sponsorshipId | FAPESP: 2014/06862-7 | |
dc.description.sponsorshipId | FAPESP: 2016/19766-1 | |
dc.description.sponsorshipId | FAPESP: 2019/22540-3 | |
dc.description.sponsorshipId | CNPq: 429829/2016-7 | |
dc.format.extent | 2172-2180 | |
dc.identifier | http://dx.doi.org/10.1016/j.bpj.2021.03.036 | |
dc.identifier.citation | Biophysical Journal. Cambridge: Cell Press, v. 120, n. 11, p. 2172-2180, 2021. | |
dc.identifier.doi | 10.1016/j.bpj.2021.03.036 | |
dc.identifier.issn | 0006-3495 | |
dc.identifier.uri | http://hdl.handle.net/11449/210398 | |
dc.identifier.wos | WOS:000658195300009 | |
dc.language.iso | eng | |
dc.publisher | Cell Press | |
dc.relation.ispartof | Biophysical Journal | |
dc.source | Web of Science | |
dc.title | Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanases | en |
dc.type | Artigo | |
dcterms.rightsHolder | Cell Press | |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0001-6326-1097[2] | |
unesp.author.orcid | 0000-0003-0927-3825[4] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Física - IBILCE | pt |