Logotipo do repositório
 

Publicação:
Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanases

dc.contributor.authorContessoto, Vinicius de Godoi [UNESP]
dc.contributor.authorRamos, Felipe Cardoso
dc.contributor.authorMelo, Ricardo Rodrigues de
dc.contributor.authorOliveira, Vinicius Martins de
dc.contributor.authorScarpassa, Josiane Aniele
dc.contributor.authorSousa, Amanda Silva de
dc.contributor.authorZanphorlin, Leticia Maria
dc.contributor.authorSlade, Gabriel Gouvea
dc.contributor.authorPereira Leite, Vitor Barbanti [UNESP]
dc.contributor.authorRuller, Roberto
dc.contributor.institutionBrazilian Ctr Res Energy & Mat
dc.contributor.institutionRice Univ
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Fed Triangulo Mineiro
dc.contributor.institutionUniversidade Federal de Mato Grosso do Sul (UFMS)
dc.date.accessioned2021-06-25T15:07:21Z
dc.date.available2021-06-25T15:07:21Z
dc.date.issued2021-06-01
dc.description.abstractUnderstanding the aspects that contribute to improving proteins' biochemical properties is of high relevance for protein engineering. Properties such as the catalytic rate, thermal stability, and thermal resistance are crucial for applying enzymes in the industry. Different interactions can influence those biochemical properties of an enzyme. Among them, the surface charge-charge interactions have been a target of particular attention. In this study, we employ the Tanford-Kirkwood solvent accessibility model using the Monte Carlo algorithm (TKSA-MC) to predict possible interactions that could improve stability and catalytic rate of a WT xylanase (XynA(WT)) and its M6 xylanase (XynA(M6)) mutant. The modeling prediction indicates that mutating from a lysine in position 99 to a glutamic acid (K99E) favors the native state stabilization in both xylanases. Our lab results showed that mutated xylanases had their thermotolerance and catalytic rate increased, which conferred higher processivity of delignified sugarcane bagasse. The TKSA-MC approach employed here is presented as an efficient computational-based design strategy that can be applied to improve the thermal resistance of enzymes with industrial and biotechnological applications.en
dc.description.affiliationBrazilian Ctr Res Energy & Mat, Brazilian Biorenewables Natl Lab, Campinas, SP, Brazil
dc.description.affiliationRice Univ, Ctr Theoret Biol Phys, Houston, TX USA
dc.description.affiliationSao Paulo State Univ, Inst Biosci Letters & Exact Sci, Dept Phys, Sao Jose Do Rio Preto, SP, Brazil
dc.description.affiliationBrazilian Ctr Res Energy & Mat, Brazilian Biosci Natl Lab, Campinas, SP, Brazil
dc.description.affiliationUniv Fed Triangulo Mineiro, Inst Exact Sci Nat & Educ, Theoret Biophys Lab, Uberaba, MG, Brazil
dc.description.affiliationUniv Fed Mato Grosso do Sul, Inst Biosci, Microorganisms & Gen Biochem Lab, Campo Grande, MS, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Inst Biosci Letters & Exact Sci, Dept Phys, Sao Jose Do Rio Preto, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2016/13998-8
dc.description.sponsorshipIdFAPESP: 2017/09662-7
dc.description.sponsorshipIdCNPq: 141985/2013-5
dc.description.sponsorshipIdFAPESP: 2017/14253-9
dc.description.sponsorshipIdFAPESP: 2018/11614-3
dc.description.sponsorshipIdFAPESP: 2014/06862-7
dc.description.sponsorshipIdFAPESP: 2016/19766-1
dc.description.sponsorshipIdFAPESP: 2019/22540-3
dc.description.sponsorshipIdCNPq: 429829/2016-7
dc.format.extent2172-2180
dc.identifierhttp://dx.doi.org/10.1016/j.bpj.2021.03.036
dc.identifier.citationBiophysical Journal. Cambridge: Cell Press, v. 120, n. 11, p. 2172-2180, 2021.
dc.identifier.doi10.1016/j.bpj.2021.03.036
dc.identifier.issn0006-3495
dc.identifier.urihttp://hdl.handle.net/11449/210398
dc.identifier.wosWOS:000658195300009
dc.language.isoeng
dc.publisherCell Press
dc.relation.ispartofBiophysical Journal
dc.sourceWeb of Science
dc.titleElectrostatic interaction optimization improves catalytic rates and thermotolerance on xylanasesen
dc.typeArtigo
dcterms.rightsHolderCell Press
dspace.entity.typePublication
unesp.author.orcid0000-0001-6326-1097[2]
unesp.author.orcid0000-0003-0927-3825[4]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentFísica - IBILCEpt

Arquivos