Logotipo do repositório
 

Publicação:
Reconstructing quantum states with generative models

dc.contributor.authorCarrasquilla, Juan
dc.contributor.authorTorlai, Giacomo
dc.contributor.authorMelko, Roger G.
dc.contributor.authorAolita, Leandro [UNESP]
dc.contributor.institutionMaRS Ctr
dc.contributor.institutionUniv Waterloo
dc.contributor.institutionPerimeter Inst Theoret Phys
dc.contributor.institutionFlatiron Inst
dc.contributor.institutionUniversidade Federal do Rio de Janeiro (UFRJ)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T12:18:48Z
dc.date.available2021-06-25T12:18:48Z
dc.date.issued2019-03-01
dc.description.abstractA major bottleneck in the development of scalable many-body quantum technologies is the difficulty in benchmarking state preparations, which suffer from an exponential 'curse of dimensionality' inherent to the classical description of quantum states. We present an experimentally friendly method for density matrix reconstruction based on neural network generative models. The learning procedure comes with a built-in approximate certificate of the reconstruction and makes no assumptions about the purity of the state under scrutiny. It can efficiently handle a broad class of complex systems including prototypical states in quantum information, as well as ground states of local spin models common to condensed matter physics. The key insight is to reduce state tomography to an unsupervised learning problem of the statistics of an informationally complete quantum measurement. This constitutes a modern machine learning approach to the validation of complex quantum devices, which may in addition prove relevant as a neural-network ansatz over mixed states suitable for variational optimization. Present day quantum technologies enable computations with tens and soon hundreds of qubits. A major outstanding challenge is to measure and benchmark the complete quantum state, a task that grows exponentially with the system size. Generative models based on restricted Boltzmann machines and recurrent neural networks can be employed to solve this quantum tomography problem in a scalable manner.en
dc.description.affiliationMaRS Ctr, Vector Inst Artificial Intelligence, Toronto, ON, Canada
dc.description.affiliationUniv Waterloo, Dept Phys & Astron, Waterloo, ON, Canada
dc.description.affiliationPerimeter Inst Theoret Phys, Waterloo, ON, Canada
dc.description.affiliationFlatiron Inst, Ctr Computat Quantum Phys, New York, NY USA
dc.description.affiliationUniv Fed Rio de Janeiro, Inst Fis, Rio De Janeiro, Brazil
dc.description.affiliationUNESP Univ Estadual Paulista, Inst Fis Teor, ICTP South Amer Inst Fundamental Res, Sao Paulo, Brazil
dc.description.affiliationUnespUNESP Univ Estadual Paulista, Inst Fis Teor, ICTP South Amer Inst Fundamental Res, Sao Paulo, Brazil
dc.description.sponsorshipPerimeter Institute for Theoretical Physics
dc.description.sponsorshipShared Hierarchical Academic Research Computing Network (SHARCNET)
dc.description.sponsorshipGovernment of Canada through Innovation, Science and Economic Development Canada
dc.description.sponsorshipProvince of Ontario through the Ministry of Economic Development, Job Creation and Trade
dc.description.sponsorshipNSERC of Canada
dc.description.sponsorshipCanada Research Chair
dc.description.sponsorshipAI grant
dc.description.sponsorshipCanada CIFAR AI (CCAI) Chairs Program
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipBrazilian agency Brazilian Serrapilheira Institute
dc.description.sponsorshipIdCNPq: 311416/2015-2
dc.description.sponsorshipIdFAPERJ: JCN E-26/202.701/2018
dc.description.sponsorshipIdCAPES: PROCAD2013
dc.description.sponsorshipIdBrazilian agency Brazilian Serrapilheira Institute: Serra-1709-17173
dc.format.extent155-161
dc.identifierhttp://dx.doi.org/10.1038/s42256-019-0028-1
dc.identifier.citationNature Machine Intelligence. London: Springernature, v. 1, n. 3, p. 155-161, 2019.
dc.identifier.doi10.1038/s42256-019-0028-1
dc.identifier.urihttp://hdl.handle.net/11449/209442
dc.identifier.wosWOS:000567067600007
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofNature Machine Intelligence
dc.sourceWeb of Science
dc.titleReconstructing quantum states with generative modelsen
dc.typeArtigo
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
dspace.entity.typePublication
unesp.author.orcid0000-0001-7263-3462[1]
unesp.author.orcid0000-0001-8478-4436[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos