Repository logo
 

Publication:
Asymptotic soliton train solutions of Kaup-Boussinesq equations

Loading...
Thumbnail Image

Advisor

Coadvisor

Graduate program

Undergraduate course

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier B.V.

Type

Article

Access right

Acesso restrito

Abstract

Asymptotic soliton trains arising from a 'large and smooth' enough initial pulse are investigated by the use of the quasiclassical quantization method for the case of Kaup-Boussinesq shallow water equations. The parameter varying along the soliton train is determined by the Bohr-Sommerfeld quantization rule which generalizes the usual rule to the case of 'two potentials' h(0)(x) and u(0)(x) representing initial distributions of height and velocity, respectively. The influence of the initial velocity u(0)(x) on the asymptotic stage of the evolution is determined. Excellent agreement of numerical solutions of the Kaup-Boussinesq equations with predictions of the asymptotic theory is found. (C) 2003 Elsevier B.V. All rights reserved.

Description

Keywords

Language

English

Citation

Wave Motion. Amsterdam: Elsevier B.V., v. 38, n. 4, p. 355-365, 2003.

Related itens

Sponsors

Units

Departments

Undergraduate courses

Graduate programs