Publicação: Linear Prediction and Discrete Wavelet Transform to Identify Pathology in Voice Signals
dc.contributor.author | Fonseca, Everthon Silva | |
dc.contributor.author | Mosconi Pereira, Denis Cesar | |
dc.contributor.author | Castilho Maschi, Luis Fernando | |
dc.contributor.author | Guido, Rodrigo Capobianco [UNESP] | |
dc.contributor.author | Fonseca, Everthon Silva [UNESP] | |
dc.contributor.author | Silva Paulo, Katia Cristina [UNESP] | |
dc.contributor.author | IEEE | |
dc.contributor.institution | Fed Inst Sao Paulo IFSP | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2018-11-29T09:28:10Z | |
dc.date.available | 2018-11-29T09:28:10Z | |
dc.date.issued | 2017-01-01 | |
dc.description.abstract | This work describes an algorithm to help in the identification of pathologically affected voices. Based on inverse linear prediction filter (LPC) and discrete wavelet transform (DWT), this method can be used in conjunction with other classifiers in order to improve them, by the addition of the new parameter we propose, DWT-RMS. Using no association with other methods, DWT-RMS gives quantitative evaluation of voice signals from male and female subjects of different ages and leads to an adequate larynx pathology classifier with 85.94% of classification accuracy, 0% of false negatives and 14.06% of false positives, to identify nodules in vocal folds. | en |
dc.description.affiliation | Fed Inst Sao Paulo IFSP, Ind Dept, Catanduva, Brazil | |
dc.description.affiliation | Sao Paulo State Univ UNESP, Inst Biosci, Sao Jose Do Rio Preto, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ UNESP, Inst Biosci, Sao Jose Do Rio Preto, Brazil | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | CNPq: 306811/2014-6 | |
dc.format.extent | 4 | |
dc.identifier.citation | 2017 Signal Processing Symposium (spsympo). New York: Ieee, 4 p., 2017. | |
dc.identifier.lattes | 6542086226808067 | |
dc.identifier.orcid | 0000-0002-0924-8024 | |
dc.identifier.uri | http://hdl.handle.net/11449/166041 | |
dc.identifier.wos | WOS:000427086800002 | |
dc.language.iso | eng | |
dc.publisher | Ieee | |
dc.relation.ispartof | 2017 Signal Processing Symposium (spsympo) | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | prediction | |
dc.subject | wavelet | |
dc.subject | pathologies | |
dc.subject | voice | |
dc.subject | signals | |
dc.title | Linear Prediction and Discrete Wavelet Transform to Identify Pathology in Voice Signals | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
dcterms.rightsHolder | Ieee | |
dspace.entity.type | Publication | |
unesp.author.lattes | 6542086226808067[4] | |
unesp.author.orcid | 0000-0002-0924-8024[4] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Ciências da Computação e Estatística - IBILCE | pt |