Publicação: Cooper pair dispersion relation for weak to strong coupling
Carregando...
Arquivos
Data
2000-10-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
American Physical Soc
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
Cooper pairing in two dimensions is analyzed with a set of renormalized equations to determine its binding energy for any fermion number density and all coupling assuming a,generic pairwise residual interfermion interaction. Also considered are Cooper pairs (CP's) with nonzero center-of-mass momentum (CMM) and their binding energy is expanded analytically in powers of the CMM up to quadratic terms. A Fermi-sea-dependent linear term in the CMM dominates the pair excitation energy in weak coupling (also called the BCS regime) while the more familiar quadratic term prevails in strong coupling (the Bose regime). The crossover, though strictly unrelated to BCS theory per se, is studied numerically as it is expected to play a central role in a model of superconductivity as a Bose-Einstein condensation of CPs where the transition temperature vanishes for all dimensionality d less than or equal to 2 for quadratic dispersion, but is nonzero for all d greater than or equal to 1 for linear dispersion.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Physical Review B. College Pk: American Physical Soc, v. 62, n. 13, p. 8671-8674, 2000.