Publicação: Performance of Soil Moisture Sensors in Florida Sandy Soils
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Mdpi
Tipo
Artigo
Direito de acesso
Resumo
Soil moisture sensors can improve water management efficiency by measuring soil volumetric water content (theta nu) in real time. Soil-specific calibration equations used to calculate theta nu can increase sensor accuracy. A laboratory study was conducted to evaluate the performance of several commercial sensors and to establish soil-specific calibration equations for different soil types. We tested five Florida sandy soils used for citrus production (Pineda, Riviera, Astatula, Candler, and Immokalee) divided into two depths (0.0-0.3 and 0.3-0.6 m). Readings were taken using twelve commercial sensors (CS650, CS616, CS655 (Campbell Scientific), GS3, 10HS, 5TE, GS1 (Meter), TDT-ACC-SEN-SDI, TDR315, TDR315S, TDR135L (Acclima), and Hydra Probe (Stevens)) connected to a datalogger (CR1000X; Campbell Scientific). Known amounts of water were added incrementally to obtain a broad range of theta nu Small 450 cm(3) samples were taken to determine the gravimetric water content and calculate the theta nu used to obtain the soil-specific calibration equations. Results indicated that factory-supplied calibration equations performed well for some sensors in sandy soils, especially 5TE, TDR315L, and GS1 (R-2 = 0.92) but not for others (10HS, GS3, and Hydra Probe). Soil -specific calibrations from this study resulted in accuracy expressed as root mean square error (RMSE) ranging from 0.018 to 0.030 m(3) m(-3) for 5TE, CS616, CS650, CS655, GS1, Hydra Probe, TDR310S, TDR315, TDR315L, and TDT-ACC-SEN-SDI, while lower accuracies were found for 10HS (0.129 m(3) m(-3)) and GS3 (0.054 m(3) m(-3)). This study provided soil -specific calibration equations to increase the accuracy of commercial soil moisture sensors to facilitate irrigation scheduling and water management in Florida sandy soils used for citrus production.
Descrição
Palavras-chave
bulk density, irrigation management, water loss reduction, volumetric water content
Idioma
Inglês
Como citar
Water. Basel: Mdpi, v. 12, n. 2, 20 p., 2020.