Logotipo do repositório
 

Publicação:
Constraining the absolute neutrino mass scale and Majorana CP violating phases by future 0νββ decay experiments

dc.contributor.authorNunokawa, H. [UNESP]
dc.contributor.authorTeves, W. J C
dc.contributor.authorFunchal, R. Zukanovich
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2014-05-27T11:20:31Z
dc.date.available2014-05-27T11:20:31Z
dc.date.issued2002-11-01
dc.description.abstractAssuming that neutrinos are Majorana particles, in a three-generation framework, current and future neutrino oscillation experiments can determine six out of the nine parameters which fully describe the structure of the neutrino mass matrix. We try to clarify the interplay among the remaining parameters, the absolute neutrino mass scale and two CP violating Majorana phases, and how they can be accessed by future neutrinoless double beta (0vυββ) decay experiments, for the normal as well as for the inverted order of the neutrino mass spectrum. Assuming the oscillation parameters to be in the range presently allowed by atmospheric, solar, reactor, and accelerator neutrino experiments, we quantitatively estimate the bounds on m 0, the lightest neutrino mass, that can be inferred if the next generation 0υββ decay experiments can probe the effective Majorana mass (m ee) down to ∼1 meV. In this context we conclude that in the case that neutrinos are Majorana particles, (a) if m 0≳300 meV, i.e., within the range directly attainable by future laboratory experiments as well as astrophysical observations, then m ee≳30 meV must be observed, (b) if m 0 ≤ 300 meV, results from future 0υββ decay experiments combined with stringent bounds on the neutrino oscillation parameters, especially the solar ones, will place much stronger limits on the allowed values of m 0 than these direct experiments. For instance, if a positive signal is observed around m ee = 10 meV, we estimate 3≲m 0/meV≲65 at 95% C.L.; on the other hand, if no signal is observed down to m ee = 10 meV, then m 0≲55 meV at 95% C.L.en
dc.description.affiliationInstituto de Fisica Teorica Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 São Paulo
dc.description.affiliationInstituto de Física Universidade de São Paulo, C. P. 66.318, 05315-970 São Paulo
dc.description.affiliationUnespInstituto de Fisica Teorica Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 São Paulo
dc.format.extent930101-9301011
dc.identifierhttp://journals.aps.org/prd/abstract/10.1103/PhysRevD.66.093010
dc.identifier.citationPhysical Review D - Particles, Fields, Gravitation and Cosmology, v. 66, n. 9, p. 930101-9301011, 2002.
dc.identifier.doi10.1103/PhysRevD.66.093010
dc.identifier.issn0556-2821
dc.identifier.scopus2-s2.0-0036871459
dc.identifier.urihttp://hdl.handle.net/11449/130444
dc.identifier.wosWOS:000179679400015
dc.language.isoeng
dc.publisherAmerican Physical Soc
dc.relation.ispartofPhysical Review D: Particles, Fields, Gravitation and Cosmology
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.subjectAtmosphere
dc.subjectAtomic particle
dc.subjectMolecular weight
dc.subjectNeutron
dc.subjectOscillation
dc.subjectPhase transition
dc.subjectRating scale
dc.subjectStructure analysis
dc.titleConstraining the absolute neutrino mass scale and Majorana CP violating phases by future 0νββ decay experimentsen
dc.typeArtigo
dcterms.licensehttp://publish.aps.org/authors/transfer-of-copyright-agreement
dcterms.rightsHolderAmerican Physical Soc
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos