Logotipo do repositório
 

Publicação:
Damage detection in a benchmark structure using AR-ARX models and statistical pattern recognition

dc.contributor.authorSilva, Samuel da
dc.contributor.authorDias Jr., Milton
dc.contributor.authorLopes Jr., Vicente [UNESP]
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:22:27Z
dc.date.available2014-05-27T11:22:27Z
dc.date.issued2007-04-01
dc.description.abstractStructural health monitoring (SHM) is related to the ability of monitoring the state and deciding the level of damage or deterioration within aerospace, civil and mechanical systems. In this sense, this paper deals with the application of a two-step auto-regressive and auto-regressive with exogenous inputs (AR-ARX) model for linear prediction of damage diagnosis in structural systems. This damage detection algorithm is based on the. monitoring of residual error as damage-sensitive indexes, obtained through vibration response measurements. In complex structures there are. many positions under observation and a large amount of data to be handed, making difficult the visualization of the signals. This paper also investigates data compression by using principal component analysis. In order to establish a threshold value, a fuzzy c-means clustering is taken to quantify the damage-sensitive index in an unsupervised learning mode. Tests are made in a benchmark problem, as proposed by IASC-ASCE with different damage patterns. The diagnosis that was obtained showed high correlation with the actual integrity state of the structure. Copyright © 2007 by ABCM.en
dc.description.affiliationABCM
dc.description.affiliationDepartment of Mechanical Design Faculty of Mechanical Engineering State University of Campinas - UNICAMP, 13083-970 Campinas, SP
dc.description.affiliationDepartmentof Mechanical Engineering Universidade Estadual Paulista-UNESP, 15385-000 Ilha Solteira, SP
dc.description.affiliationUnespDepartmentof Mechanical Engineering Universidade Estadual Paulista-UNESP, 15385-000 Ilha Solteira, SP
dc.format.extent174-184
dc.identifierhttp://dx.doi.org/10.1590/S1678-58782007000200007
dc.identifier.citationJournal of the Brazilian Society of Mechanical Sciences and Engineering, v. 29, n. 2, p. 174-184, 2007.
dc.identifier.doi10.1590/S1678-58782007000200007
dc.identifier.file2-s2.0-34548783418.pdf
dc.identifier.issn1678-5878
dc.identifier.issn1806-3691
dc.identifier.lattes1457178419328525
dc.identifier.scieloS1678-58782007000200007
dc.identifier.scopus2-s2.0-34548783418
dc.identifier.urihttp://hdl.handle.net/11449/69608
dc.identifier.wosWOS:000255403500007
dc.language.isoeng
dc.relation.ispartofJournal of the Brazilian Society of Mechanical Sciences and Engineering
dc.relation.ispartofjcr1.627
dc.relation.ispartofsjr0,362
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectDamage detection
dc.subjectFuzzy c-means clustering
dc.subjectPrincipal component analysis
dc.subjectStructural health monitoring
dc.subjectTime series
dc.subjectAerospace applications
dc.subjectAlgorithms
dc.subjectData compression
dc.subjectFuzzy clustering
dc.subjectMathematical models
dc.subjectPattern recognition
dc.subjectTime series analysis
dc.subjectVibration analysis
dc.subjectAR-ARX models
dc.subjectDamage sensitive index
dc.subjectLinear prediction
dc.titleDamage detection in a benchmark structure using AR-ARX models and statistical pattern recognitionen
dc.typeArtigo
dcterms.licensehttp://www.scielo.br/revistas/jbsmse/iaboutj.htm
dspace.entity.typePublication
unesp.author.lattes1457178419328525
unesp.author.orcid0000-0001-6430-3746[1]
unesp.author.orcid0000-0002-6285-0997[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Ilha Solteirapt
unesp.departmentEngenharia Mecânica - FEISpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-34548783418.pdf
Tamanho:
256.39 KB
Formato:
Adobe Portable Document Format