Logo do repositório

Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms

dc.contributor.authorGarcia-Junior, Marcelo Augusto
dc.contributor.authorAndrade, Bruno Silva
dc.contributor.authorLima, Ana Paula
dc.contributor.authorSoares, Iara Pereira
dc.contributor.authorNotário, Ana Flávia Oliveira
dc.contributor.authorBernardino, Sttephany Silva
dc.contributor.authorGuevara-Vega, Marco Fidel
dc.contributor.authorHonório-Silva, Ghabriel
dc.contributor.authorMunoz, Rodrigo Alejandro Abarza
dc.contributor.authorJardim, Ana Carolina Gomes [UNESP]
dc.contributor.authorMartins, Mário Machado
dc.contributor.authorGoulart, Luiz Ricardo
dc.contributor.authorCunha, Thulio Marquez
dc.contributor.authorCarneiro, Murillo Guimarães
dc.contributor.authorSabino-Silva, Robinson
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)
dc.contributor.institutionState University of Southwest of Bahia (UESB)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T18:57:12Z
dc.date.issued2025-02-01
dc.description.abstractDeveloping affordable, rapid, and accurate biosensors is essential for SARS-CoV-2 surveillance and early detection. We created a bio-inspired peptide, using the SAGAPEP AI platform, for COVID-19 salivary diagnostics via a portable electrochemical device coupled to Machine Learning algorithms. SAGAPEP enabled molecular docking simulations against the SARS-CoV-2 Spike protein’s RBD, leading to the synthesis of Bio-Inspired Artificial Intelligence Peptide 1 (BIAI1). Molecular docking was used to confirm interactions between BIAI1 and SARS-CoV-2, and BIAI1 was functionalized on rhodamine-modified electrodes. Cyclic voltammetry (CV) using a [Fe(CN)6]3−/4 solution detected virus levels in saliva samples with and without SARS-CoV-2. Support vector machine (SVM)-based machine learning analyzed electrochemical data, enhancing sensitivity and specificity. Molecular docking revealed stable hydrogen bonds and electrostatic interactions with RBD, showing an average affinity of −250 kcal/mol. Our biosensor achieved 100% sensitivity, 80% specificity, and 90% accuracy for 1.8 × 10⁴ focus-forming units in infected saliva. Validation with COVID-19-positive and -negative samples using a neural network showed 90% sensitivity, specificity, and accuracy. This BIAI1-based electrochemical biosensor, integrated with machine learning, demonstrates a promising non-invasive, portable solution for COVID-19 screening and detection in saliva.en
dc.description.affiliationDepartment of Physiology Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart Innovation Center in Salivary Diagnostic and Nanobiotechnology Institute of Biomedical Sciences Federal University of Uberlandia (UFU), Uberlândia
dc.description.affiliationDepartment of Biological Sciences Laboratory of Bioinformatics and Computational Chemistry State University of Southwest of Bahia (UESB)
dc.description.affiliationPost-Graduation Program in Genetics and Biochemistry Laboratory of Nanobiotechnology—Dr Luiz Ricardo Goulart Federal University of Uberlândia (UFU), Uberlâ, ndia
dc.description.affiliationInstitute of Chemistry Federal University of Uberlândia (UFU)
dc.description.affiliationInstitute of Biosciences Languages and Exact Sciences (Ibilce) São Paulo State University (Unesp)
dc.description.affiliationLaboratory of Antiviral Research Department of Microbiology Institute of Biomedical Sciences Federal University of Uberlandia (UFU), Uberlândia 38408-100
dc.description.affiliationDepartment of Pulmonology School of Medicine Federal University of Uberlandia (UFU)
dc.description.affiliationFaculty of Computing Federal University of Uberlandia (UFU)
dc.description.affiliationUnespInstitute of Biosciences Languages and Exact Sciences (Ibilce) São Paulo State University (Unesp)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCNPq: #406840/2022-9
dc.description.sponsorshipIdCNPq: #465669/2014-0
dc.identifierhttp://dx.doi.org/10.3390/bios15020075
dc.identifier.citationBiosensors, v. 15, n. 2, 2025.
dc.identifier.doi10.3390/bios15020075
dc.identifier.issn2079-6374
dc.identifier.scopus2-s2.0-85218471358
dc.identifier.urihttps://hdl.handle.net/11449/301094
dc.language.isoeng
dc.relation.ispartofBiosensors
dc.sourceScopus
dc.subjectartificial intelligence
dc.subjectbio-inspired peptides
dc.subjectbiosensors
dc.subjectCOVID-19
dc.subjectelectrochemical detection
dc.subjectsalivary diagnostics
dc.titleArtificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithmsen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-9724-6503[1]
unesp.author.orcid0000-0002-8031-9454[2]
unesp.author.orcid0000-0001-8230-5825[9]
unesp.author.orcid0000-0002-6348-7923[10]
unesp.author.orcid0000-0001-7381-2788[11]
unesp.author.orcid0000-0002-1803-4861[12]
unesp.author.orcid0000-0002-2915-8990[14]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt

Arquivos