Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms
| dc.contributor.author | Garcia-Junior, Marcelo Augusto | |
| dc.contributor.author | Andrade, Bruno Silva | |
| dc.contributor.author | Lima, Ana Paula | |
| dc.contributor.author | Soares, Iara Pereira | |
| dc.contributor.author | Notário, Ana Flávia Oliveira | |
| dc.contributor.author | Bernardino, Sttephany Silva | |
| dc.contributor.author | Guevara-Vega, Marco Fidel | |
| dc.contributor.author | Honório-Silva, Ghabriel | |
| dc.contributor.author | Munoz, Rodrigo Alejandro Abarza | |
| dc.contributor.author | Jardim, Ana Carolina Gomes [UNESP] | |
| dc.contributor.author | Martins, Mário Machado | |
| dc.contributor.author | Goulart, Luiz Ricardo | |
| dc.contributor.author | Cunha, Thulio Marquez | |
| dc.contributor.author | Carneiro, Murillo Guimarães | |
| dc.contributor.author | Sabino-Silva, Robinson | |
| dc.contributor.institution | Universidade Federal de Uberlândia (UFU) | |
| dc.contributor.institution | State University of Southwest of Bahia (UESB) | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.date.accessioned | 2025-04-29T18:57:12Z | |
| dc.date.issued | 2025-02-01 | |
| dc.description.abstract | Developing affordable, rapid, and accurate biosensors is essential for SARS-CoV-2 surveillance and early detection. We created a bio-inspired peptide, using the SAGAPEP AI platform, for COVID-19 salivary diagnostics via a portable electrochemical device coupled to Machine Learning algorithms. SAGAPEP enabled molecular docking simulations against the SARS-CoV-2 Spike protein’s RBD, leading to the synthesis of Bio-Inspired Artificial Intelligence Peptide 1 (BIAI1). Molecular docking was used to confirm interactions between BIAI1 and SARS-CoV-2, and BIAI1 was functionalized on rhodamine-modified electrodes. Cyclic voltammetry (CV) using a [Fe(CN)6]3−/4 solution detected virus levels in saliva samples with and without SARS-CoV-2. Support vector machine (SVM)-based machine learning analyzed electrochemical data, enhancing sensitivity and specificity. Molecular docking revealed stable hydrogen bonds and electrostatic interactions with RBD, showing an average affinity of −250 kcal/mol. Our biosensor achieved 100% sensitivity, 80% specificity, and 90% accuracy for 1.8 × 10⁴ focus-forming units in infected saliva. Validation with COVID-19-positive and -negative samples using a neural network showed 90% sensitivity, specificity, and accuracy. This BIAI1-based electrochemical biosensor, integrated with machine learning, demonstrates a promising non-invasive, portable solution for COVID-19 screening and detection in saliva. | en |
| dc.description.affiliation | Department of Physiology Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart Innovation Center in Salivary Diagnostic and Nanobiotechnology Institute of Biomedical Sciences Federal University of Uberlandia (UFU), Uberlândia | |
| dc.description.affiliation | Department of Biological Sciences Laboratory of Bioinformatics and Computational Chemistry State University of Southwest of Bahia (UESB) | |
| dc.description.affiliation | Post-Graduation Program in Genetics and Biochemistry Laboratory of Nanobiotechnology—Dr Luiz Ricardo Goulart Federal University of Uberlândia (UFU), Uberlâ, ndia | |
| dc.description.affiliation | Institute of Chemistry Federal University of Uberlândia (UFU) | |
| dc.description.affiliation | Institute of Biosciences Languages and Exact Sciences (Ibilce) São Paulo State University (Unesp) | |
| dc.description.affiliation | Laboratory of Antiviral Research Department of Microbiology Institute of Biomedical Sciences Federal University of Uberlandia (UFU), Uberlândia 38408-100 | |
| dc.description.affiliation | Department of Pulmonology School of Medicine Federal University of Uberlandia (UFU) | |
| dc.description.affiliation | Faculty of Computing Federal University of Uberlandia (UFU) | |
| dc.description.affiliationUnesp | Institute of Biosciences Languages and Exact Sciences (Ibilce) São Paulo State University (Unesp) | |
| dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
| dc.description.sponsorshipId | CNPq: #406840/2022-9 | |
| dc.description.sponsorshipId | CNPq: #465669/2014-0 | |
| dc.identifier | http://dx.doi.org/10.3390/bios15020075 | |
| dc.identifier.citation | Biosensors, v. 15, n. 2, 2025. | |
| dc.identifier.doi | 10.3390/bios15020075 | |
| dc.identifier.issn | 2079-6374 | |
| dc.identifier.scopus | 2-s2.0-85218471358 | |
| dc.identifier.uri | https://hdl.handle.net/11449/301094 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | Biosensors | |
| dc.source | Scopus | |
| dc.subject | artificial intelligence | |
| dc.subject | bio-inspired peptides | |
| dc.subject | biosensors | |
| dc.subject | COVID-19 | |
| dc.subject | electrochemical detection | |
| dc.subject | salivary diagnostics | |
| dc.title | Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms | en |
| dc.type | Artigo | pt |
| dspace.entity.type | Publication | |
| unesp.author.orcid | 0000-0002-9724-6503[1] | |
| unesp.author.orcid | 0000-0002-8031-9454[2] | |
| unesp.author.orcid | 0000-0001-8230-5825[9] | |
| unesp.author.orcid | 0000-0002-6348-7923[10] | |
| unesp.author.orcid | 0000-0001-7381-2788[11] | |
| unesp.author.orcid | 0000-0002-1803-4861[12] | |
| unesp.author.orcid | 0000-0002-2915-8990[14] | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Preto | pt |

