Logo do repositório

Anisotropic electrical conductivity of magnetized hot quark matter

dc.contributor.authorBandyopadhyay, Aritra
dc.contributor.authorGhosh, Sabyasachi
dc.contributor.authorFarias, Ricardo L. S.
dc.contributor.authorDey, Jayanta
dc.contributor.authorKrein, Gastao [UNESP]
dc.contributor.institutionUniversidade Federal de Sergipe (UFS)
dc.contributor.institutionSouth China Normal Univ
dc.contributor.institutionIndian Inst Technol Bhilai
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T12:28:04Z
dc.date.available2021-06-25T12:28:04Z
dc.date.issued2020-12-08
dc.description.abstractWe studied the effect of a strong magnetic field (B) on the electrical conductivity of hot quark matter. The electrical conductivity is a key transport coefficient determining the time dependence and strength of magnetic fields generated in a relativistic heavy-ion collision. A magnetic field induces Hall anisotropic conduction, phase-space Landau-level quantization and, if sufficiently strong, interferes with prominent QCD phenomena such as dynamical quark mass generation, likely affecting the quark matter electrical conductivity, which depends strongly on the quark masses. To address these issues, we used a quasiparticle description of quark matter in which the electric charge carriers are constituent quarks with temperature-and magnetic-field-dependent masses predicted by a Nambu-Jona-Lasinio model. The model accurately describes recent lattice QCD results showing magnetic catalysis at low temperatures and inverse magnetic catalysis at temperatures close to the pseudocritical temperature (T-pc) of the QCD phase transition. We found that the magnetic field increases the conductivity component parallel to it and decreases the transverse component, in qualitative agreement with recent lattice QCD results. In addition, we found that (1) the space anisotropy of the conductivity increases with B, (2) the longitudinal conductivity increases due to phase-space Landau-level quantization, (3) a lowest Landau level approximation behaves poorly for temperatures close to T-pc, and (5) inverse magnetic catalysis leaves a distinctive signal in all components of the conductivity, a prominent peak at T-pc. Our study adds to the existing body of work on the hot quark matter electrical conductivity by incorporating nontrivial temperature and magnetic field effects on dynamical mass generation. Our results are useful both for studies employing magnetohydrodynamics simulations of heavy-ion collisions and for getting insight on lattice QCD results.en
dc.description.affiliationUniv Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil
dc.description.affiliationSouth China Normal Univ, Inst Quantum Matter, Guangdong Prov Key Lab Nucl Sci, Guangzhou 510006, Peoples R China
dc.description.affiliationIndian Inst Technol Bhilai, GEC Campus, Raipur 492015, Madhya Pradesh, India
dc.description.affiliationUniv Estadual Paulista, Inst Fis Teor, Rua Dr Bento Teobaldo Ferraz 271,Bloco 2, BR-01140070 Sao Paulo, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Inst Fis Teor, Rua Dr Bento Teobaldo Ferraz 271,Bloco 2, BR-01140070 Sao Paulo, SP, Brazil
dc.description.sponsorshipMinistry of Human Resource Development (MHRD), Government of India
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundacao de Amparo a Pesquisa do Estado do Rio Grande do Sul - FAPERGS
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdCNPq: 304758/2017-5
dc.description.sponsorshipIdCNPq: 305894/2009-9
dc.description.sponsorshipIdCNPq: 464898/2014-5
dc.description.sponsorshipIdFundacao de Amparo a Pesquisa do Estado do Rio Grande do Sul - FAPERGS: 19/2551-0000690-0
dc.description.sponsorshipIdFAPESP: 2013/01907-0
dc.description.sponsorshipIdCAPES: 001
dc.format.extent13
dc.identifierhttp://dx.doi.org/10.1103/PhysRevD.102.114015
dc.identifier.citationPhysical Review D. College Pk: Amer Physical Soc, v. 102, n. 11, 13 p., 2020.
dc.identifier.doi10.1103/PhysRevD.102.114015
dc.identifier.issn2470-0010
dc.identifier.urihttp://hdl.handle.net/11449/209750
dc.identifier.wosWOS:000596456300003
dc.language.isoeng
dc.publisherAmer Physical Soc
dc.relation.ispartofPhysical Review D
dc.sourceWeb of Science
dc.titleAnisotropic electrical conductivity of magnetized hot quark matteren
dc.typeArtigo
dcterms.licensehttp://publish.aps.org/authors/transfer-of-copyright-agreement
dcterms.rightsHolderAmer Physical Soc
dspace.entity.typePublication
unesp.author.orcid0000-0003-1212-824X[2]
unesp.author.orcid0000-0002-0894-6402[4]
unesp.author.orcid0000-0003-1713-8578[5]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos