Logotipo do repositório
 

Publicação:
Stable computation of mode shapes of uniform Euler-Bernoulli beams subject to classical and non-classical boundary conditions via Lie symmetries

dc.contributor.authorNunes, Afonso Willian [UNESP]
dc.contributor.authorSilva, Samuel da [UNESP]
dc.contributor.authorMencik, Jean-Mathieu
dc.contributor.authorGonçalves, Paulo José Paupitz [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2023-02-02T14:19:33Z
dc.date.available2023-02-02T14:19:33Z
dc.date.issued2022
dc.description.abstractStudying structural elements undergoing transverse vibration is crucial for scientific and industrial applications' design, safety, and efficiency. The Euler-Bernoulli beam model addresses a broad class of slender beam-like structures. The underlying assumption of neglecting shearing and rotary inertia effects at the beam's cross-section is reasonable. Displacement solutions of free vibrating uniform Euler-Bernoulli beams are usually defined using trigonometric and hyperbolic terms, prone to numerical instabilities at high frequencies as the wavelength becomes small. This conference paper proposes a Lie symmetry approach for determining numerically stable expressions systematically for the mode shape functions of Euler-Bernoulli beams subject to classical and non-classical boundary conditions. These mode shape solutions are computed by considering the invariance properties under a Lie group of transformations of the differential equation of a vibrating beam and its boundary conditions. The mode shapes are written as functions of constant parameters that do not exhibit instabilities when numerically assessed. Such stability provides appropriate mode shape solutions for high-frequency analysis, relevant for enhancing the accuracy of vibrating-beam solutions through the superimposition of different mode shapes within the range of validity of the Euler-Bernoulli beam model or building symbolic approximate mode shape solutions for rectangular plates.en
dc.description.affiliationUniversidade Estadual Paulista (UNESP)
dc.description.affiliationInstitut National des Sciences Appliquées de Centre Val de Loire
dc.description.sponsorshipIdFAPESP: 2021/12894-2
dc.description.sponsorshipIdCNPq: 131846/2020-5
dc.description.sponsorshipIdCNPq: 404463/2016-9
dc.description.sponsorshipIdCNPq: 306526/2019-0
dc.description.versionPostprintpt
dc.identifier.lattes4294762593811986
dc.identifier.lattes6807553800607803
dc.identifier.lattes5643635559643312
dc.identifier.orcid0000-0002-5220-983X
dc.identifier.orcid0000-0001-6430-3746
dc.identifier.orcid0000-0001-7983-5665
dc.identifier.urihttp://hdl.handle.net/11449/239261
dc.language.isopor
dc.relation.ispartofProceedings of the 8th International Symposium on Solid Mechanicsen
dc.rights.accessRightsAcesso restrito
dc.subjectEuler-Bernoulli beamsen
dc.subjectMode shape functionsen
dc.subjectNumerically stable solutionsen
dc.subjectLie symmetriesen
dc.titleStable computation of mode shapes of uniform Euler-Bernoulli beams subject to classical and non-classical boundary conditions via Lie symmetriesen
dc.typeArtigo
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Ilha Solteirapt
unesp.departmentEngenharia Mecânica - FEISpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
nunes_aw_postprint_ilha_stable.pdf
Tamanho:
290.72 KB
Formato:
Adobe Portable Document Format
Descrição:

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
2.24 KB
Formato:
Item-specific license agreed upon to submission
Descrição: