Logotipo do repositório
 

Publicação:
Development of neurofuzzy architecture for solving the N-Queens problem

dc.contributor.authorDa Silva, Ivan Nunes [UNESP]
dc.contributor.authorUlson, Jose Alfredo [UNESP]
dc.contributor.authorDe Souza, Andre Nunes [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2022-04-28T20:06:51Z
dc.date.available2022-04-28T20:06:51Z
dc.date.issued2005-11-01
dc.description.abstractNeural networks are dynamic systems consisting of highly interconnected and parallel nonlinear processing elements that are shown to be extremely effective in computation. This paper presents an architecture of recurrent neural networks for solving the N -Queens problem. More specifically, a modified Hopfield network is developed and its internal parameters are explicitly computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points, which represent a solution of the considered problem. The network is shown to be completely stable and globally convergent to the solutions of the N -Queens problem. A fuzzy logic controller is also incorporated in the network to minimize convergence time. Simulation results are presented to validate the proposed approach.en
dc.description.affiliationDepartment of Electrical Engineering State University of São Paulo-UNESP UNESP/FE/DEE, CP 473, CEP 17033-360, Bauru, SP
dc.description.affiliationUniversity of São Paulo (USP)
dc.description.affiliationSão Paulo State University (UNESP)
dc.description.affiliationState University of Sao Paulo (UNESP)
dc.description.affiliationUnespDepartment of Electrical Engineering State University of São Paulo-UNESP UNESP/FE/DEE, CP 473, CEP 17033-360, Bauru, SP
dc.description.affiliationUnespSão Paulo State University (UNESP)
dc.description.affiliationUnespState University of Sao Paulo (UNESP)
dc.format.extent717-734
dc.identifierhttp://dx.doi.org/10.1080/03081070500422695
dc.identifier.citationInternational Journal of General Systems, v. 34, n. 6, p. 717-734, 2005.
dc.identifier.doi10.1080/03081070500422695
dc.identifier.issn0308-1079
dc.identifier.issn1563-5104
dc.identifier.scopus2-s2.0-30344469712
dc.identifier.urihttp://hdl.handle.net/11449/224676
dc.language.isoeng
dc.relation.ispartofInternational Journal of General Systems
dc.sourceScopus
dc.subjectCombinatorial optimization
dc.subjectFuzzy inference systems
dc.subjectHopfield network
dc.subjectNeural network architecture
dc.subjectRecurrent neural network
dc.titleDevelopment of neurofuzzy architecture for solving the N-Queens problemen
dc.typeArtigo
dspace.entity.typePublication
unesp.departmentEngenharia Elétrica - FEBpt

Arquivos