Publicação: Superior performance of rGO-tin oxide nanocomposite for selective reduction of CO2to methanol
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
This study reports on the photoelectrochemical reduction of CO2 to methanol using Sn3O4 and reduced graphene oxide-tin oxide (rGO-Sn) nanocomposite synthesized through the microwave-assisted hydrothermal method. The resulting rGO-Sn nanocomposite exhibited enhanced activity and good stability during photoelectrochemical CO2 reduction explained by Z-scheme electron transport. Graphene oxide (GO) has played a crucial role in the chemical composition and morphology of nanocomposites. The interaction between GO and Sn2+ ions during synthesis promoted the formation of the SnO2 phase in the nanocomposite, thus generating mixed rGO/Sn3O4/SnO2 phases (the rGO-Sn nanocomposite). Remarkable selectivity for CO2/methanol conversion was obtained for both Sn3O4 and the nanocomposite at different potentials, in which the nanocomposite presented the highest conversion to methanol with a faradaic efficiency of 45 % at -0.3 V vs. Ag/AgCl. The improved activity of the nanocomposite was ascribed to the efficient use of solar energy (UV + visible light), to the decrease in electronic recombination in nanocomposite, which enabled an efficient electron-hole separation on the surface of the nanocomposite, and to the presence of rGO being combined with Sn3O4 and SnO2 structures, which ensured a faster charge transport rate. This study reveals the potential of rGO-Sn nanocomposites as photocathodic material for solar-to-chemical energy conversion.
Descrição
Palavras-chave
CO2reduction, Microwave-assisted hydrothermal method, Photoelectrochemical properties, Reduced graphene oxide, Sn3O4
Idioma
Inglês
Como citar
Journal of CO2 Utilization, v. 46.