Publicação:
Efficient parametric adjustment of fuzzy inference system using unconstrained optimization

dc.contributor.authorDa Silva, Ivan Nunes
dc.contributor.authorFlauzino, Rogério Andrade [UNESP]
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:22:39Z
dc.date.available2014-05-27T11:22:39Z
dc.date.issued2007-12-01
dc.description.abstractThis paper presents a new methodology for the adjustment of fuzzy inference systems, which uses technique based on error back-propagation method. The free parameters of the fuzzy inference system, such as its intrinsic parameters of the membership function and the weights of the inference rules, are automatically adjusted. This methodology is interesting, not only for the results presented and obtained through computer simulations, but also for its generality concerning to the kind of fuzzy inference system used. Therefore, this methodology is expandable either to the Mandani architecture or also to that suggested by Takagi-Sugeno. The validation of the presented methodology is accomplished through estimation of time series and by a mathematical modeling problem. More specifically, the Mackey-Glass chaotic time series is used for the validation of the proposed methodology. © Springer-Verlag Berlin Heidelberg 2007.en
dc.description.affiliationUniversity of São Paulo Department of Electrical Engineering, CP 359, CEP 13566.590, São Carlos, SP
dc.description.affiliationSão Paulo State University Department of Production Engineering, CP 473, CEP 17033.360, Bauru, SP
dc.description.affiliationUnespSão Paulo State University Department of Production Engineering, CP 473, CEP 17033.360, Bauru, SP
dc.format.extent399-406
dc.identifierhttp://dx.doi.org/10.1007/978-3-540-73007-1_49
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 4507 LNCS, p. 399-406.
dc.identifier.doi10.1007/978-3-540-73007-1_49
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.scopus2-s2.0-38049162135
dc.identifier.urihttp://hdl.handle.net/11449/70007
dc.language.isoeng
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.relation.ispartofsjr0,295
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectFuzzy systems
dc.subjectSystem optimization
dc.subjectTuning algorithm
dc.subjectComputer simulation
dc.subjectConstrained optimization
dc.subjectError analysis
dc.subjectParameter estimation
dc.subjectTime series analysis
dc.subjectFuzzy inference
dc.titleEfficient parametric adjustment of fuzzy inference system using unconstrained optimizationen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Baurupt
unesp.departmentEngenharia de Produção - FEBpt

Arquivos