Logotipo do repositório
 

Publicação:
Dynamical evidence for an early giant planet instability

dc.contributor.authorRibeiro, Rafael de Sousa [UNESP]
dc.contributor.authorMorbidelli, Alessandro
dc.contributor.authorRaymond, Sean N.
dc.contributor.authorIzidoro, Andre [UNESP]
dc.contributor.authorGomes, Rodney
dc.contributor.authorVieira Neto, Ernesto [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionCNRS
dc.contributor.institutionObservatório Nacional
dc.date.accessioned2020-12-12T02:32:14Z
dc.date.available2020-12-12T02:32:14Z
dc.date.issued2020-03-15
dc.description.abstractThe dynamical structure of the Solar System can be explained by a period of orbital instability experienced by the giant planets. While a late instability was originally proposed to explain the Late Heavy Bombardment, recent work favors an early instability. Here we model the early dynamical evolution of the outer Solar System to self-consistently constrain the most likely timing of the instability. We first simulate the dynamical sculpting of the primordial outer planetesimal disk during the accretion of Uranus and Neptune from migrating planetary embryos during the gas disk phase, and determine the separation between Neptune and the inner edge of the planetesimal disk. We performed simulations with a range of (inward and outward) migration histories for Jupiter. We find that, unless Jupiter migrated inwards by 10 AU or more, the instability almost certainly happened within 100 Myr of the start of Solar System formation. There are two distinct possible instability triggers. The first is an instability that is triggered by the planets themselves, with no appreciable influence from the planetesimal disk. About half of the planetary systems that we consider have a self-triggered instability. Of those, the median instability time is ∼4Myr. Among self-stable systems – where the planets are locked in a resonant chain that remains stable in the absence of a planetesimal's disk– our self-consistently sculpted planetesimal disks nonetheless trigger a giant planet instability with a median instability time of 37–62 Myr for a reasonable range of migration histories of Jupiter. The simulations that give the latest instability times are those that invoked long-range inward migration of Jupiter from 15 AU or beyond; however these simulations over-excited the inclinations of Kuiper belt objects and are inconsistent with the present-day Solar System. We conclude on dynamical grounds that the giant planet instability is likely to have occurred early in Solar System history.en
dc.description.affiliationSão Paulo State University UNESP Campus of Guaratinguetá, Av. Dr. Ariberto Pereira da Cunha, 333 - Pedregulho, Guaratinguetá - SP
dc.description.affiliationLaboratoire Lagrange UMR7293 Université Côte d'Azur CNRS, Observatoire de la Côte d'Azur, Boulevard de l'Observatoire
dc.description.affiliationLaboratoire dAstrophysique de Bordeaux Univ. Bordeaux CNRS, B18N, alle Geoffroy Saint-Hilaire
dc.description.affiliationObservatório Nacional, Rua General José Cristino 77, CEP 20921-400
dc.description.affiliationUnespSão Paulo State University UNESP Campus of Guaratinguetá, Av. Dr. Ariberto Pereira da Cunha, 333 - Pedregulho, Guaratinguetá - SP
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2015/15588-9
dc.description.sponsorshipIdFAPESP: 2016/12686-2
dc.description.sponsorshipIdFAPESP: 2016/19556-7
dc.description.sponsorshipIdFAPESP: 2016/24561-0
dc.description.sponsorshipIdFAPESP: 2017/09919-8
dc.identifierhttp://dx.doi.org/10.1016/j.icarus.2019.113605
dc.identifier.citationIcarus, v. 339.
dc.identifier.doi10.1016/j.icarus.2019.113605
dc.identifier.issn1090-2643
dc.identifier.issn0019-1035
dc.identifier.lattes7161963144100182
dc.identifier.orcid0000-0002-7589-0998
dc.identifier.scopus2-s2.0-85077039054
dc.identifier.urihttp://hdl.handle.net/11449/201428
dc.language.isoeng
dc.relation.ispartofIcarus
dc.sourceScopus
dc.subjectGiant planet instability
dc.subjectPlanet-disk interactions
dc.subjectPlanetesimals
dc.subjectPlanets, migration
dc.subjectSolar System dynamical evolution
dc.titleDynamical evidence for an early giant planet instabilityen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.lattes7161963144100182(6)
unesp.author.orcid0000-0002-1666-5141 0000-0002-1666-5141[1]
unesp.author.orcid0000-0001-8974-0758[3]
unesp.author.orcid0000-0003-1878-0634[4]
unesp.author.orcid0000-0002-7589-0998(6)
unesp.departmentMatemática - FEGpt

Arquivos