Symmetry breaking in a localized interacting binary Bose-Einstein condensate in a bichromatic optical lattice
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
By direct numerical simulation of the time-dependent Gross-Pitaevskii equation using the split-step Fourier spectral method, we study different aspects of the localization of a cigar-shaped interacting binary (two-component) Bose-Einstein condensate (BEC) in a one-dimensional bichromatic quasiperiodic optical-lattice potential, as used in a recent experiment on the localization of a BEC. We consider two types of localized states: (i) when both localized components have a maximum of density at the origin x=0, and (ii) when the first component has a maximum of density and the second a minimum of density at x=0. In the noninteracting case, the density profiles are symmetric around x=0. We numerically study the breakdown of this symmetry due to interspecies and intraspecies interactions acting on the two components. Where possible, we have compared the numerical results with a time-dependent variational analysis. We also demonstrate the stability of the localized symmetry-broken BEC states under small perturbation. © 2010 The American Physical Society.
Descrição
Palavras-chave
Idioma
Inglês
Citação
Physical Review A - Atomic, Molecular, and Optical Physics, v. 81, n. 2, 2010.




