Publicação:
Neural network based on adaptive resonance theory with continuous training for multi-configuration transient stability analysis of electric power systems

dc.contributor.authorMarchiori, Sandra C. [UNESP]
dc.contributor.authorda Silveira, Maria do Carmo G. [UNESP]
dc.contributor.authorLotufo, Anna Diva P. [UNESP]
dc.contributor.authorMinussi, Carlos R. [UNESP]
dc.contributor.authorMartins Lopes, Mara Lucia [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T13:29:07Z
dc.date.available2014-05-20T13:29:07Z
dc.date.issued2011-01-01
dc.description.abstractThis work presents a methodology to analyze electric power systems transient stability for first swing using a neural network based on adaptive resonance theory (ART) architecture, called Euclidean ARTMAP neural network. The ART architectures present plasticity and stability characteristics, which are very important for the training and to execute the analysis in a fast way. The Euclidean ARTMAP version provides more accurate and faster solutions, when compared to the fuzzy ARTMAP configuration. Three steps are necessary for the network working, training, analysis and continuous training. The training step requires much effort (processing) while the analysis is effectuated almost without computational effort. The proposed network allows approaching several topologies of the electric system at the same time; therefore it is an alternative for real time transient stability of electric power systems. To illustrate the proposed neural network an application is presented for a multi-machine electric power systems composed of 10 synchronous machines, 45 buses and 73 transmission lines. (C) 2010 Elsevier B.V. All rights reserved.en
dc.description.affiliationUniv Estadual Paulista, Dept Elect Engn, BR-15385000 Ilha Solteira, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Dept Elect Engn, BR-15385000 Ilha Solteira, SP, Brazil
dc.format.extent706-715
dc.identifierhttp://dx.doi.org/10.1016/j.asoc.2009.12.032
dc.identifier.citationApplied Soft Computing. Amsterdam: Elsevier B.V., v. 11, n. 1, p. 706-715, 2011.
dc.identifier.doi10.1016/j.asoc.2009.12.032
dc.identifier.issn1568-4946
dc.identifier.urihttp://hdl.handle.net/11449/9775
dc.identifier.wosWOS:000281591300070
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofApplied Soft Computing
dc.relation.ispartofjcr3.907
dc.relation.ispartofsjr1,199
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectElectric power systemsen
dc.subjectTransient stability analysisen
dc.subjectNeural networken
dc.subjectEuclidean ARTMAP neural networken
dc.titleNeural network based on adaptive resonance theory with continuous training for multi-configuration transient stability analysis of electric power systemsen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.lattes6022112355517660[3]
unesp.author.lattes7166279400544764[4]
unesp.author.orcid0000-0002-0192-2651[3]
unesp.author.orcid0000-0001-6428-4506[4]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Ilha Solteirapt
unesp.departmentEngenharia Elétrica - FEISpt

Arquivos

Licença do Pacote

Agora exibindo 1 - 2 de 2
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: