Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Spatial pattern recognition of urban sprawl using a geographically weighted regression for spatial electric load forecasting

dc.contributor.authorMelo, J. D. [UNESP]
dc.contributor.authorPadilha-Feltrin, A. [UNESP]
dc.contributor.authorCarreno, E. M.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUNIOESTE
dc.date.accessioned2018-12-11T17:27:42Z
dc.date.available2018-12-11T17:27:42Z
dc.date.issued2015-11-10
dc.description.abstractDistribution utilities must perform forecasts in spatial manner to determine the locations that could increase their electric demand. In general, these forecasts are made in the urban area, without regard to the preferences of the inhabitants to develop its activities outside the city boundary. This may lead to errors in decision making of the distribution network expansion planning. In order to identify such preferences, this paper presents a geographically weighted regression that explore spatial patterns to determines the probability of rural regions become urban zones, as part of the urban sprawl. The proposed method is applied in a Brazilian midsize city, showing that the use of the calculated probabilities decreases the global error of spatial load forecasting in 6.5% of the load growth.en
dc.description.affiliationDept. Electrical Engineering University of the State of Sao Paulo UNESP
dc.description.affiliationCenter for Engineering and Mathematical Sciences State University of West Parana UNIOESTE
dc.description.affiliationUnespDept. Electrical Engineering University of the State of Sao Paulo UNESP
dc.identifierhttp://dx.doi.org/10.1109/ISAP.2015.7325537
dc.identifier.citation2015 18th International Conference on Intelligent System Application to Power Systems, ISAP 2015.
dc.identifier.doi10.1109/ISAP.2015.7325537
dc.identifier.scopus2-s2.0-84962290825
dc.identifier.urihttp://hdl.handle.net/11449/177925
dc.language.isoeng
dc.relation.ispartof2015 18th International Conference on Intelligent System Application to Power Systems, ISAP 2015
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectDistribution network planning
dc.subjectgeographically weighted regression
dc.subjectspatial electric load forecasting
dc.subjectspatial regression
dc.titleSpatial pattern recognition of urban sprawl using a geographically weighted regression for spatial electric load forecastingen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication
unesp.author.lattes3886842168147059[2]
unesp.author.orcid0000-0001-6495-440X[2]
unesp.departmentEngenharia Elétrica - FEISpt

Arquivos