Publicação: CYCLIC CODES THROUGH B[X], B[X; 1/kp Z(0)] and B[X; 1/p(k) Z(0)]: A COMPARISON
dc.contributor.author | Shah, Tariq | |
dc.contributor.author | De Andrade, Antonio Aparecido [UNESP] | |
dc.contributor.institution | Quaid I Azam Univ | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2014-05-20T14:02:50Z | |
dc.date.available | 2014-05-20T14:02:50Z | |
dc.date.issued | 2012-08-01 | |
dc.description.abstract | It is very well known that algebraic structures have valuable applications in the theory of error-correcting codes. Blake [Codes over certain rings, Inform. and Control 20 (1972) 396-404] has constructed cyclic codes over Z(m) and in [Codes over integer residue rings, Inform. and Control 29 (1975), 295-300] derived parity check-matrices for these codes. In [Linear codes over finite rings, Tend. Math. Appl. Comput. 6(2) (2005) 207-217]. Andrade and Palazzo present a construction technique of cyclic, BCH, alternant, Goppa and Srivastava codes over a local finite ring B. However, in [Encoding through generalized polynomial codes, Comput. Appl. Math. 30(2) (2011) 1-18] and [Constructions of codes through semigroup ring B[X; 1/2(2) Z(0)] and encoding, Comput. Math. Appl. 62 (2011) 1645-1654], Shah et al. extend this technique of constructing linear codes over a finite local ring B via monoid rings B[X; 1/p(k) Z(0)], where p = 2 and k = 1, 2, respectively, instead of the polynomial ring B[X]. In this paper, we construct these codes through the monoid ring B[X; 1/kp Z(0)], where p = 2 and k = 1, 2, 3. Moreover, we also strengthen and generalize the results of [Encoding through generalized polynomial codes, Comput. Appl. Math. 30(2) (2011) 1-18] and [Constructions of codes through semigroup ring B[X; 1/2(2) Z(0)]] and [Encoding, Comput. Math. Appl. 62 (2011) 1645-1654] to the case of k = 3. | en |
dc.description.affiliation | Quaid I Azam Univ, Dept Math, Islamabad, Pakistan | |
dc.description.affiliation | São Paulo State Univ, Dept Math, Sao Jose do Rio Preto, SP, Brazil | |
dc.description.affiliationUnesp | São Paulo State Univ, Dept Math, Sao Jose do Rio Preto, SP, Brazil | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorshipId | FAPESP: 07/56052-8 | |
dc.description.sponsorshipId | FAPESP: 11/03441-3 | |
dc.format.extent | 19 | |
dc.identifier | http://dx.doi.org/10.1142/S0219498812500788 | |
dc.identifier.citation | Journal of Algebra and Its Applications. Singapore: World Scientific Publ Co Pte Ltd, v. 11, n. 4, p. 19, 2012. | |
dc.identifier.doi | 10.1142/S0219498812500788 | |
dc.identifier.issn | 0219-4988 | |
dc.identifier.lattes | 8940498347481982 | |
dc.identifier.uri | http://hdl.handle.net/11449/22138 | |
dc.identifier.wos | WOS:000307044900016 | |
dc.language.iso | eng | |
dc.publisher | World Scientific Publ Co Pte Ltd | |
dc.relation.ispartof | Journal of Algebra and Its Applications | |
dc.relation.ispartofjcr | 0.600 | |
dc.relation.ispartofsjr | 0,690 | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Web of Science | |
dc.subject | Semigroup ring | en |
dc.subject | Cyclic code | en |
dc.subject | BCH code | en |
dc.subject | Alternant code | en |
dc.subject | Goppa code | en |
dc.subject | Srivastava code | en |
dc.title | CYCLIC CODES THROUGH B[X], B[X; 1/kp Z(0)] and B[X; 1/p(k) Z(0)]: A COMPARISON | en |
dc.type | Artigo | |
dcterms.license | http://www.worldscientific.com/page/authors/author-rights | |
dcterms.rightsHolder | World Scientific Publ Co Pte Ltd | |
dspace.entity.type | Publication | |
unesp.author.lattes | 8940498347481982[2] | |
unesp.author.orcid | 0000-0001-6452-2236[2] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Matemática - IBILCE | pt |
Arquivos
Licença do Pacote
1 - 2 de 2
Nenhuma Miniatura disponível
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição:
Nenhuma Miniatura disponível
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: