Logo do repositório
 

Recommendation Systems: A Deep Learning Oriented Perspective

dc.contributor.authorLampa, Igor Luiz [UNESP]
dc.contributor.authorGomes, Vitoria Zanon [UNESP]
dc.contributor.authorZafalon, Geraldo Francisco Donegá [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T18:37:17Z
dc.date.issued2024-01-01
dc.description.abstractThe massive use of the digital platforms has provided an exponential increase at the amount of data consumed and daily generated. Thus, there is a data overload which directly affects the consume experience of digital products, whether at find a news, consume an e-commerce product or to choose a movie in a streaming platform. In this context, emerge the recommendation systems, which have the finality of provide an efficient way to comprehend the user predilections and to recommend direct items. Thus, this work brings the classical concepts and techniques already used, as well as analyzes their use along with deep learning, which through evaluated results has a grater capability to obtain implicit relationships between users and items, providing recommendations with better quality and accuracy. Furthermore, considering the review of the literature and analysis provided, an architectural model for recommendation system based on deep learning is proposed, which is defined as a hybrid system.en
dc.description.affiliationDepartment of Computer Science and Statistics Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo, 2265, Jardim Nazareth, SP
dc.description.affiliationUnespDepartment of Computer Science and Statistics Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo, 2265, Jardim Nazareth, SP
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdFAPESP: 2020/08615-8
dc.description.sponsorshipIdCAPES: 88887.686064/2022-00
dc.format.extent682-689
dc.identifierhttp://dx.doi.org/10.5220/0012622700003690
dc.identifier.citationInternational Conference on Enterprise Information Systems, ICEIS - Proceedings, v. 1, p. 682-689.
dc.identifier.doi10.5220/0012622700003690
dc.identifier.issn2184-4992
dc.identifier.scopus2-s2.0-85193961549
dc.identifier.urihttps://hdl.handle.net/11449/298505
dc.language.isoeng
dc.relation.ispartofInternational Conference on Enterprise Information Systems, ICEIS - Proceedings
dc.sourceScopus
dc.subjectCollaborative Filtering
dc.subjectContent-Based
dc.subjectDeep Learning
dc.subjectHybrid Approach
dc.subjectRecommendation Systems
dc.titleRecommendation Systems: A Deep Learning Oriented Perspectiveen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication
unesp.author.orcid0009-0005-2099-9020[1]
unesp.author.orcid0000-0003-4176-566X[2]
unesp.author.orcid0000-0003-2384-011X[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt

Arquivos