Publicação: Closed expressions for Lie algebra invariants and finite transformations
dc.contributor.author | Aldrovandi, R. [UNESP] | |
dc.contributor.author | Barbosa, A. L. [UNESP] | |
dc.contributor.author | Freitas, L. P. [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2014-05-27T11:18:17Z | |
dc.date.available | 2014-05-27T11:18:17Z | |
dc.date.issued | 1997-12-01 | |
dc.description.abstract | A simple procedure to obtain complete, closed expressions for Lie algebra invariants is presented. The invariants are ultimately polynomials in the group parameters. The construction of finite group elements requires the use of projectors, whose coefficients are invariant polynomials. The detailed general forms of these projectors are given. Closed expressions for finite Lorentz transformations, both homogeneous and inhomogeneous, as well as for Galilei transformations, are found as examples. | en |
dc.description.affiliation | Inst. de Fisica Teorica State University of São Paulo, São Paulo SP | |
dc.format.extent | 3021-3050 | |
dc.identifier | http://dx.doi.org/10.1007/BF02435725 | |
dc.identifier.citation | International Journal of Theoretical Physics, v. 36, n. 12, p. 3021-3050, 1997. | |
dc.identifier.doi | 10.1007/BF02435725 | |
dc.identifier.issn | 0020-7748 | |
dc.identifier.scopus | 2-s2.0-0031313475 | |
dc.identifier.uri | http://hdl.handle.net/11449/65240 | |
dc.identifier.wos | WOS:000072217000023 | |
dc.language.iso | eng | |
dc.relation.ispartof | International Journal of Theoretical Physics | |
dc.relation.ispartofjcr | 0.968 | |
dc.relation.ispartofsjr | 0,285 | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Scopus | |
dc.title | Closed expressions for Lie algebra invariants and finite transformations | en |
dc.type | Artigo | |
dcterms.license | http://www.springer.com/open+access/authors+rights | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulo | pt |