Logo do repositório

Finite and periodic orbits of shift radix systems

dc.contributor.authorKirschenhofer, Peter
dc.contributor.authorPethő, Attila
dc.contributor.authorSurer, Paul [UNESP]
dc.contributor.authorThuswaldner, Jörg
dc.contributor.institutionUniversity of Leoben
dc.contributor.institutionHungarian Academy of Sciences and University of Debrecen
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-29T08:00:12Z
dc.date.available2022-04-29T08:00:12Z
dc.date.issued2010-01-01
dc.description.abstractFor r = (r0,…, rd-1) ε ℝd define the function τr: ℤd → ℤd, z = (z0,…, zd-1) → (z1,…, zd-1,- ⌊rz⌊), where rz is the scalar product of the vectors r and z. If each orbit of τr ends up at 0, we call τr a shift radix system. It is a well-known fact that each orbit of τr ends up periodically if the polynomial td+rd-1td-1+…+r0 associated to r is contractive. On the other hand, whenever this polynomial has at least one root outside the unit disc, there exist starting vectors that give rise to unbounded orbits. The present paper deals with the remaining situations of periodicity properties of the mappings τr for vectors r associated to polynomials whose roots have modulus less than or equal to one with equality in at least one case. We show that for a large class of vectors r belonging to the above class the ultimate periodicity of the orbits of τr is equivalent to the fact that τs is a shift radix system or has another prescribed orbit structure for a certain parameter s related to r. These results are combined with new algorithmic results in order to characterize vectors r of the above class that give rise to ultimately periodic orbits of τr for each starting value. In particular, we work out the description of these vectors r for the case d = 3. This leads to sets which seem to have a very intricate structure.en
dc.description.affiliationUniversity of Leoben, Franz-Josef-Str. 18
dc.description.affiliationFaculty of Informatics Number Theory Research Group Hungarian Academy of Sciences and University of Debrecen, P.O. Box 12
dc.description.affiliationDepartamento de Matemática IBILCE - UNESP, Rua Cristóvão Colombo, 2265 - Jardim Nazareth
dc.description.affiliationUnespDepartamento de Matemática IBILCE - UNESP, Rua Cristóvão Colombo, 2265 - Jardim Nazareth
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipAustrian Science Fund
dc.description.sponsorshipIdFAPESP: 2009/07744-0
dc.description.sponsorshipIdAustrian Science Fund: S9610
dc.format.extent421-448
dc.identifierhttp://dx.doi.org/10.5802/jtnb.725
dc.identifier.citationJournal de Theorie des Nombres de Bordeaux, v. 22, n. 2, p. 421-448, 2010.
dc.identifier.doi10.5802/jtnb.725
dc.identifier.issn1246-7405
dc.identifier.scopus2-s2.0-85009961851
dc.identifier.urihttp://hdl.handle.net/11449/228275
dc.language.isoeng
dc.relation.ispartofJournal de Theorie des Nombres de Bordeaux
dc.sourceScopus
dc.titleFinite and periodic orbits of shift radix systemsen
dc.typeArtigo
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentMatemática - IBILCEpt

Arquivos