Publicação: The cohomological invariant E'(G,W) and some properties
Nenhuma Miniatura disponível
Data
2012
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
Let G be a group, W a nonempty G-set and M a Z2G-module. Consider the restriction map resG W : H1(G,M) → Pi wi∈E H1(Gwi,M), [f] → (resGG wi [f])i∈I , where E = {wi, i ∈ I} is a set of orbit representatives in W and Gwi = {g ∈ G | gwi = wi} is the G-stabilizer subgroup (or isotropy subgroup) of wi, for each wi ∈ E. In this work we analyze some results presented in Andrade et al [5] about splittings and duality of groups, using the point of view of Dicks and Dunwoody [10] and the invariant E'(G,W) := 1+dimkerresG W, defined when Gwi is a subgroup of infinite index in G for all wi in E, andM = Z2 (where dim = dimZ2). We observe that the theory of splittings of groups (amalgamated free product and HNN-groups) is inserted in the combinatory theory of groups which has many applications in graph theory (see, for example, Serre [12] and Dicks and Dunwoody [10]).
Descrição
Palavras-chave
Idioma
Inglês
Como citar
International Journal of Applied Mathematics, v. 25, n. 2, p. 183-190, 2012.