Logotipo do repositório
 

Publicação:
Percolation across households in mechanistic models of non-pharmaceutical interventions in SARS-CoV-2 disease dynamics

dc.contributor.authorFranco, Caroline [UNESP]
dc.contributor.authorFerreira, Leonardo Souto [UNESP]
dc.contributor.authorSudbrack, Vítor [UNESP]
dc.contributor.authorBorges, Marcelo Eduardo
dc.contributor.authorPoloni, Silas [UNESP]
dc.contributor.authorPrado, Paulo Inácio
dc.contributor.authorWhite, Lisa J.
dc.contributor.authorÁguas, Ricardo
dc.contributor.authorKraenkel, Roberto André [UNESP]
dc.contributor.authorCoutinho, Renato Mendes
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversity of Oxford
dc.contributor.institutionObservatório COVID-19 BR
dc.contributor.institutionUniversity of Lausanne
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionCentre for Tropical Medicine and Global Health
dc.contributor.institutionUniversidade Federal do ABC (UFABC)
dc.date.accessioned2022-04-29T08:40:54Z
dc.date.available2022-04-29T08:40:54Z
dc.date.issued2022-06-01
dc.description.abstractSince the emergence of the novel coronavirus disease 2019 (COVID-19), mathematical modelling has become an important tool for planning strategies to combat the pandemic by supporting decision-making and public policies, as well as allowing an assessment of the effect of different intervention scenarios. A proliferation of compartmental models were developed by the mathematical modelling community in order to understand and make predictions about the spread of COVID-19. While compartmental models are suitable for simulating large populations, the underlying assumption of a well-mixed population might be problematic when considering non-pharmaceutical interventions (NPIs) which have a major impact on the connectivity between individuals in a population. Here we propose a modification to an extended age-structured SEIR (susceptible–exposed–infected–recovered) framework, with dynamic transmission modelled using contact matrices for various settings in Brazil. By assuming that the mitigation strategies for COVID-19 affect the connections among different households, network percolation theory predicts that the connectivity among all households decreases drastically above a certain threshold of removed connections. We incorporated this emergent effect at population level by modulating home contact matrices through a percolation correction function, with the few additional parameters fitted to hospitalisation and mortality data from the city of São Paulo. Our model with percolation effects was better supported by the data than the same model without such effects. By allowing a more reliable assessment of the impact of NPIs, our improved model provides a better description of the epidemiological dynamics and, consequently, better policy recommendations.en
dc.description.affiliationInstitute of Theoretical Physics São Paulo State University
dc.description.affiliationBig Data Institute Li Ka Shing Centre for Health Information and Discovery Nuffield Department of Medicine University of Oxford
dc.description.affiliationObservatório COVID-19 BR
dc.description.affiliationDepartment of Ecology and Evolution University of Lausanne
dc.description.affiliationInstituto de Biociências Universidade de São Paulo
dc.description.affiliationNuffield Department of Medicine University of Oxford Centre for Tropical Medicine and Global Health
dc.description.affiliationCentro de Matemática Computação e Cognição - Universidade Federal do ABC
dc.description.affiliationUnespInstitute of Theoretical Physics São Paulo State University
dc.description.sponsorshipLi Ka Shing Foundation
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipBill and Melinda Gates Foundation
dc.description.sponsorshipIdCAPES: 001
dc.description.sponsorshipIdFAPESP: 2016/01343-7
dc.description.sponsorshipIdFAPESP: 2017/26770-8
dc.description.sponsorshipIdFAPESP: 2018/23984-0
dc.description.sponsorshipIdFAPESP: 2018/24037-4
dc.description.sponsorshipIdFAPESP: 2019/26310-2
dc.description.sponsorshipIdCNPq: 311832/2017-2
dc.description.sponsorshipIdCNPq: 313055/2020-3
dc.description.sponsorshipIdCNPq: 315854/2020-0
dc.description.sponsorshipIdBill and Melinda Gates Foundation: OPP1193472
dc.identifierhttp://dx.doi.org/10.1016/j.epidem.2022.100551
dc.identifier.citationEpidemics, v. 39.
dc.identifier.doi10.1016/j.epidem.2022.100551
dc.identifier.issn1878-0067
dc.identifier.issn1755-4365
dc.identifier.scopus2-s2.0-85126569164
dc.identifier.urihttp://hdl.handle.net/11449/230597
dc.language.isoeng
dc.relation.ispartofEpidemics
dc.sourceScopus
dc.subjectCompartmental model
dc.subjectCOVID-19
dc.subjectPercolation
dc.subjectSEIR
dc.titlePercolation across households in mechanistic models of non-pharmaceutical interventions in SARS-CoV-2 disease dynamicsen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0001-8424-9396 0000-0001-8424-9396 0000-0001-8424-9396[1]
unesp.author.orcid0000-0002-9023-0031 0000-0002-9023-0031[2]
unesp.author.orcid0000-0002-4815-2092 0000-0002-4815-2092 0000-0002-4815-2092[3]
unesp.author.orcid0000-0002-5807-3064[4]
unesp.author.orcid0000-0001-5602-5184 0000-0001-5602-5184[9]
unesp.author.orcid0000-0002-2828-8558 0000-0002-2828-8558[10]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos