Repository logo
 

Publication:
Temperature dependence of fractal dimension of grain boundary region in SnO2 based ceramics

Loading...
Thumbnail Image

Advisor

Coadvisor

Graduate program

Undergraduate course

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Type

Article

Access right

Acesso restrito

Abstract

Fractal dimensions of grain boundary region in doped SnO2 ceramics were determined based on previously derived fractal model. This model considers fractal dimension as a measure of homogeneity of distribution of charge carriers. Application of the derived fractal model enables calculation of fractal dimension using results of impedance spectroscopy. The model was verified by experimentally determined temperature dependence of the fractal dimension of SnO2 ceramics. Obtained results confirm that the non-Debye response of the grain boundary region is connected with distribution of defects and consequently with a homogeneity of a distribution of the charge carriers. Also, it was found that C-T-1 function has maximum at temperature at which the change in dominant type of defects takes place. This effect could be considered as a third-order transition.

Description

Keywords

Language

English

Citation

Journal of Materials Science. New York: Springer, v. 41, n. 19, p. 6193-6197, 2006.

Related itens

Sponsors

Units

Departments

Undergraduate courses

Graduate programs