Logotipo do repositório
 

Publicação:
LEAST ACTION PRINCIPLE and THE INCOMPRESSIBLE EULER EQUATIONS WITH VARIABLE DENSITY

dc.contributor.authorLopes Filho, Milton C.
dc.contributor.authorNussenzveig Lopes, Helena J.
dc.contributor.authorPrecioso, Juliana C. [UNESP]
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T14:02:55Z
dc.date.available2014-05-20T14:02:55Z
dc.date.issued2011-05-01
dc.description.abstractIn this article we study a variational formulation, proposed by V. I. Arnold and by Y. Brenier, for the incompressible Euler equations with variable density. We consider the problem of minimizing an action functional, the integral in time of the kinetic energy, among fluid motions considered as trajectories in the group of volume-preserving diffeomorphisms beginning at the identity and ending at some fixed diffeomorphism at a given time. We show that a relaxed version of this variational problem always has a solution, and we derive an Euler-Lagrange system for the relaxed minimization problem which we call the relaxed Euler equations. Finally, we prove consistency between the relaxed Euler equations and the classical Euler system, showing that weak solutions of the relaxed Euler equations with the appropriate geometric structure give rise to classical Euler solutions and that classical solutions of the Euler system induce weak solutions of the relaxed Euler equations. The first consistency result is new even in the constant density case. The remainder of our analysis is an extension of the work of Y. Brenier (1999) to the variable density case.en
dc.description.affiliationUniv Estadual Campinas UNICAMP, Dept Matemat, IMECC, BR-13083859 Campinas, SP, Brazil
dc.description.affiliationUniv Estadual Paulista UNESP, Dept Matemat, BR-15054000 Sj do Rio Preto, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista UNESP, Dept Matemat, BR-15054000 Sj do Rio Preto, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 07/51490-7
dc.description.sponsorshipIdFAPESP: 01/06984-5
dc.description.sponsorshipIdCNPq: 303301/2007-4
dc.description.sponsorshipIdCNPq: 302214/2004-6
dc.format.extent2641-2661
dc.identifierhttp://dx.doi.org/10.1090/S0002-9947-2010-05206-7
dc.identifier.citationTransactions of The American Mathematical Society. Providence: Amer Mathematical Soc, v. 363, n. 5, p. 2641-2661, 2011.
dc.identifier.doi10.1090/S0002-9947-2010-05206-7
dc.identifier.fileWOS000290511300014.pdf
dc.identifier.issn0002-9947
dc.identifier.urihttp://hdl.handle.net/11449/22168
dc.identifier.wosWOS:000290511300014
dc.language.isoeng
dc.publisherAmer Mathematical Soc
dc.relation.ispartofTransactions of the American Mathematical Society
dc.relation.ispartofjcr1.496
dc.relation.ispartofsjr2,378
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.titleLEAST ACTION PRINCIPLE and THE INCOMPRESSIBLE EULER EQUATIONS WITH VARIABLE DENSITYen
dc.typeArtigo
dcterms.licensehttp://www.ams.org/publications/journals/journalsframework/abouttran#Copying
dcterms.rightsHolderAmer Mathematical Soc
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentMatemática - IBILCEpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000290511300014.pdf
Tamanho:
490.12 KB
Formato:
Adobe Portable Document Format

Licença do Pacote

Agora exibindo 1 - 2 de 2
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: