Publicação: PRINCIPAL COMPONENT ANALYSIS (PCA) PARA a AVALIAcAO DE DADOS QUiMICOS E GERAcAO DE HEAT MAPS: UM TUTORIAL
dc.contributor.author | Ferreira, Dennis da Silva | |
dc.contributor.author | Rodrigues, Leticia da Silva [UNESP] | |
dc.contributor.author | Pereira, Fabiola Manhas Verbi [UNESP] | |
dc.contributor.author | Pereira-Filho, Edenir Rodrigues | |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.date.accessioned | 2023-07-29T11:50:59Z | |
dc.date.available | 2023-07-29T11:50:59Z | |
dc.date.issued | 2023-03-08 | |
dc.description.abstract | PRINCIPAL COMPONENT ANALYSIS (PCA) FOR CHEMICAL DATA EVALUATION AND HEAT MAPS PREPARATION: A TUTORIAL. This tutorial shows a step-by-step guide on handling big datasets using principal component analysis (PCA). A dataset of chemical elements' concentration, emission spectrum, and energy-dispersive X-ray fluorescence (EDXRF) of e-waste were used as examples. Five routines were proposed to apply data processing and PCA calculation focusing data from laser-induced breakdown spectroscopy (LIBS), EDXRF, and heat maps preparation. These routines can be used in various softwares such as MatLab, Octave, R, and Python. PCA was applied in three examples; the first was for concentrations, and the other two were for spectra. An example of heat maps assembling a hyperspectral image of a printed circuit was also described. In addition, a playlist was created on YouTube using the available examples. Therefore, with this tutorial, it may be possible to learn how to deal with a large volume of data by applying PCA. The authors hope to contribute to those researching in the area. | en |
dc.description.affiliation | Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil | |
dc.description.affiliation | Univ Estadual Paulista, Inst Quim, BR-14800060 Araraquara, SP, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, Inst Quim, BR-14800060 Araraquara, SP, Brazil | |
dc.format.extent | 8 | |
dc.identifier | http://dx.doi.org/10.21577/0100-4042.20230030 | |
dc.identifier.citation | Quimica Nova. Sao Paulo: Soc Brasileira Quimica, 8 p., 2023. | |
dc.identifier.doi | 10.21577/0100-4042.20230030 | |
dc.identifier.issn | 0100-4042 | |
dc.identifier.uri | http://hdl.handle.net/11449/245302 | |
dc.identifier.wos | WOS:000991897600001 | |
dc.language.iso | eng | |
dc.publisher | Soc Brasileira Quimica | |
dc.relation.ispartof | Quimica Nova | |
dc.source | Web of Science | |
dc.subject | exploratory analysis | |
dc.subject | data mining | |
dc.subject | data visualization | |
dc.subject | direct solid sample analysis | |
dc.subject | laser | |
dc.subject | X-ray fluorescence | |
dc.title | PRINCIPAL COMPONENT ANALYSIS (PCA) PARA a AVALIAcAO DE DADOS QUiMICOS E GERAcAO DE HEAT MAPS: UM TUTORIAL | en |
dc.type | Artigo | pt |
dcterms.rightsHolder | Soc Brasileira Quimica | |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0002-8117-2108[3] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Química, Araraquara | pt |