Logotipo do repositório
 

Publicação:
Going Above and Beyond: A Tenfold Gain in the Performance of Luminescence Thermometers Joining Multiparametric Sensing and Multiple Regression

dc.contributor.authorMaturi, Fernando E. [UNESP]
dc.contributor.authorBrites, Carlos D. S.
dc.contributor.authorXimendes, Erving C.
dc.contributor.authorMills, Carolyn
dc.contributor.authorOlsen, Bradley
dc.contributor.authorJaque, Daniel
dc.contributor.authorRibeiro, Sidney J. L. [UNESP]
dc.contributor.authorCarlos, Luís D.
dc.contributor.institutionUniversity of Aveiro
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Autónoma de Madrid
dc.contributor.institutionMassachusetts Institute of Technology
dc.date.accessioned2022-05-01T08:44:36Z
dc.date.available2022-05-01T08:44:36Z
dc.date.issued2021-01-01
dc.description.abstractLuminescence thermometry has substantially progressed in the last decade, rapidly approaching the performance of concurrent technologies. Performance is usually assessed through the relative thermal sensitivity, Sr, and temperature uncertainty, δT. Until now, the state-of-the-art values at ambient conditions do not exceed maximum Sr of 12.5% K−1 and minimum δT of 0.1 K. Although these numbers are satisfactory for most applications, they are insufficient for fields that require lower thermal uncertainties, such as biomedicine. This has motivated the development of materials with an improved thermal response, many of them responding to the temperature through distinct photophysical properties. This paper demonstrates how the performance of multiparametric luminescent thermometers can be further improved by simply applying new analysis routes. The synergy between multiparametric readouts and multiple linear regression makes possible a tenfold improvement in Sr and δT, reaching a world record of 50% K−1 and 0.05 K, respectively. This is achieved without requiring the development of new materials or upgrading the detection system as illustrated by using the green fluorescent protein and Ag2S nanoparticles. These results open a new era in biomedicine thanks to the development of new diagnosis tools based on the detection of super-small temperature fluctuations in living specimens.en
dc.description.affiliationPhantom-g CICECO – Aveiro Institute of Materials Department of Physics University of Aveiro
dc.description.affiliationInstitute of Chemistry São Paulo State University (UNESP)
dc.description.affiliationNanomaterials for Bioimaging Group Universidade Autónoma de Madrid
dc.description.affiliationDepartment of Chemical Engineering Massachusetts Institute of Technology
dc.description.affiliationUnespInstitute of Chemistry São Paulo State University (UNESP)
dc.identifierhttp://dx.doi.org/10.1002/lpor.202100301
dc.identifier.citationLaser and Photonics Reviews.
dc.identifier.doi10.1002/lpor.202100301
dc.identifier.issn1863-8899
dc.identifier.issn1863-8880
dc.identifier.scopus2-s2.0-85113141998
dc.identifier.urihttp://hdl.handle.net/11449/233418
dc.language.isoeng
dc.relation.ispartofLaser and Photonics Reviews
dc.sourceScopus
dc.subjectgreen fluorescent proteins
dc.subjectluminescence nanothermometry
dc.subjectmultiple linear regression
dc.subjectsilver sulfide
dc.titleGoing Above and Beyond: A Tenfold Gain in the Performance of Luminescence Thermometers Joining Multiparametric Sensing and Multiple Regressionen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0003-4747-6535[8]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Química, Araraquarapt
unesp.departmentQuímica Inorgânica - IQARpt

Arquivos