Logo do repositório

Protein allosteric site identification using machine learning and per amino acid residue reported internal protein nanoenvironment descriptors

dc.contributor.authorOmage, Folorunsho Bright
dc.contributor.authorSalim, José Augusto
dc.contributor.authorMazoni, Ivan
dc.contributor.authorYano, Inácio Henrique
dc.contributor.authorBorro, Luiz
dc.contributor.authorGonzalez, Jorge Enrique Hernández [UNESP]
dc.contributor.authorde Moraes, Fabio Rogerio [UNESP]
dc.contributor.authorGiachetto, Poliana Fernanda
dc.contributor.authorTasic, Ljubica
dc.contributor.authorArni, Raghuvir Krishnaswamy [UNESP]
dc.contributor.authorNeshich, Goran
dc.contributor.institutionEmpresa Brasileira de Pesquisa Agropecuária (EMBRAPA)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T18:37:13Z
dc.date.issued2024-12-01
dc.description.abstractAllosteric regulation plays a crucial role in modulating protein functions and represents a promising strategy in drug development, offering enhanced specificity and reduced toxicity compared to traditional active site inhibition. Existing computational methods for predicting allosteric sites on proteins often rely on static protein surface pocket features, normal mode analysis or extensive molecular dynamics simulations encompassing both the protein function modulator and the protein itself. In this study, we introduce an innovative methodology that employs a per amino acid residue classifier to distinguish allosteric site-forming residues (AFRs) from non-allosteric, or free residues (FRs). Our model, STINGAllo, exhibits robust performance, achieving Distance Center Center (DCC) success rate when all AFRs were predicted within pockets identified by FPocket, overall DCC, F1 score and a Matthews correlation coefficient (MCC) of 78 %, 60 %, 64 % and 64 % respectively. Furthermore, we identified key descriptors that characterize the internal protein nanoenvironment of AFRs, setting them apart from FRs. These descriptors include the sponge effect, distance to the protein centre of geometry (cg), hydrophobic interactions, electrostatic potentials, eccentricity, and graph bottleneck features.en
dc.description.affiliationComputational Biology Research Group Embrapa Digital Agriculture, São Paulo
dc.description.affiliationBiological Chemistry Laboratory Department of Organic Chemistry Institute of Chemistry University of Campinas (UNICAMP), São Paulo
dc.description.affiliationDepartment of Plant Biology Institute of Biology University of Campinas (UNICAMP), São Paulo
dc.description.affiliationSão Paulo State University (UNESP) Institute of Biosciences Humanities and Exact Sciences
dc.description.affiliationUnespSão Paulo State University (UNESP) Institute of Biosciences Humanities and Exact Sciences
dc.format.extent3907-3919
dc.identifierhttp://dx.doi.org/10.1016/j.csbj.2024.10.036
dc.identifier.citationComputational and Structural Biotechnology Journal, v. 23, p. 3907-3919.
dc.identifier.doi10.1016/j.csbj.2024.10.036
dc.identifier.issn2001-0370
dc.identifier.scopus2-s2.0-85208138983
dc.identifier.urihttps://hdl.handle.net/11449/298458
dc.language.isoeng
dc.relation.ispartofComputational and Structural Biotechnology Journal
dc.sourceScopus
dc.subjectAllosteric sites
dc.subjectComputational drug design
dc.subjectDistance center center
dc.subjectInternal protein nanoenvironment
dc.subjectMachine learning
dc.subjectProtein structure analysis
dc.subjectSTING descriptors
dc.titleProtein allosteric site identification using machine learning and per amino acid residue reported internal protein nanoenvironment descriptorsen
dc.typeArtigopt
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt

Arquivos