Logo do repositório

Quantum rate electrodynamics and resonant junction electronics of heterocyclic molecules

dc.contributor.authorNieto, Edgar Fabian Pinzón [UNESP]
dc.contributor.authorLopes, Laís Cristine [UNESP]
dc.contributor.authordos Santos, Adriano [UNESP]
dc.contributor.authorRaposo, Maria Manuela Marques
dc.contributor.authorBueno, Paulo Roberto [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversity of Minho
dc.date.accessioned2025-04-29T18:42:33Z
dc.date.issued2024-10-10
dc.description.abstractThe quantum rate theory provides a framework to understand electron-transfer reactions by correlating the electron-transfer rate constant (ν) with the quantum capacitance (Cq) and the molecular conductance (G). This theory, which is rooted in relativistic quantum electrodynamics, predicts a fundamental frequency ν=E/h for electron-transfer reactions, where E is the energy associated with the density of states Cq/e2. This work demonstrates the applicability of the quantum rate theory to the intermolecular charge transfer of push-pull heterocyclic compounds assembled over conducting electrodes. Remarkably, the observed differences between molecular junction electronics formed by push-pull molecules and the electrodynamics of electrochemical reactions on redox-active modified electrodes can be attributed solely to the adiabatic setting of the quantum conductance in push-pull molecular junctions. The electrolyte field-effect screening environment plays a crucial role in modulating the resonant quantum conductance dynamics of the molecule-bridge-electrode structure. In this context, the intermolecular electrodynamics within the frontier molecular orbital of push-pull heterocyclic molecules adhere to relativistic quantum mechanics, consistent with the predictions of the quantum rate theory.en
dc.description.affiliationDepartment of Engineering Physics and Mathematics Institute of Chemistry São Paulo State University, São Paulo
dc.description.affiliationCentre of Chemistry University of Minho, Campus de Gualtar, Braga
dc.description.affiliationUnespDepartment of Engineering Physics and Mathematics Institute of Chemistry São Paulo State University, São Paulo
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação para a Ciência e a Tecnologia
dc.description.sponsorshipIdCNPq: 2018/24525-9
dc.description.sponsorshipIdFundação para a Ciência e a Tecnologia: UID/QUI/0686/2016
dc.description.sponsorshipIdFundação para a Ciência e a Tecnologia: UID/QUI/0686/2020
dc.identifierhttp://dx.doi.org/10.1016/j.electacta.2024.144749
dc.identifier.citationElectrochimica Acta, v. 501.
dc.identifier.doi10.1016/j.electacta.2024.144749
dc.identifier.issn0013-4686
dc.identifier.scopus2-s2.0-85200153931
dc.identifier.urihttps://hdl.handle.net/11449/299492
dc.language.isoeng
dc.relation.ispartofElectrochimica Acta
dc.sourceScopus
dc.subjectDensity-of-states
dc.subjectHeterocyclic molecule
dc.subjectQuantum capacitance
dc.subjectQuantum conductance
dc.subjectQuantum electrodynamics
dc.subjectQuantum rate theory
dc.titleQuantum rate electrodynamics and resonant junction electronics of heterocyclic moleculesen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationbc74a1ce-4c4c-4dad-8378-83962d76c4fd
relation.isOrgUnitOfPublication.latestForDiscoverybc74a1ce-4c4c-4dad-8378-83962d76c4fd
unesp.author.orcid0000-0001-6812-5609[3]
unesp.author.orcid0000-0002-7996-1626[4]
unesp.author.orcid0000-0003-2827-0208[5]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Química, Araraquarapt

Arquivos